Group A
3 × 4 = 12 3\times4=12 3 × 4 = 12
1. Answer any four questions
(a) If a a a be a non-zero complex number and z z z be any complex number, then define a z a^z a z . What is the principle value of a z a^z a z ?
(b) Apply Descarte's rule of sign to find the nature of the roots of the equation:
x 4 + 2 x 2 + 3 x − 1 = 0 x^4+2x^2+3x-1=0 x 4 + 2 x 2 + 3 x − 1 = 0
Given equation:
f ( x ) = x 4 + 2 x 2 + 3 x − 1 = 0 f(x)=x^4+2x^2+3x-1=0 f ( x ) = x 4 + 2 x 2 + 3 x − 1 = 0
The above equation is a polynomial of degree 4 4 4 . Therefore, there are 4 4 4 roots to the above polynomial.
In order to find the number of positive roots, we have to count the number of sign changes in f ( x ) f(x) f ( x ) .
f ( x ) = x 4 + 2 x 2 + 3 x − 1 f(x)=x^4+2x^2+3x-1\\ f ( x ) = x 4 + 2 x 2 + 3 x − 1
The only sign change is between, 3 x 3x 3 x and − 1 -1 − 1 . Therefore, the number of positive roots is 1 1 1 .
In order to find the number of negative roots, we have to count the number of sign changes in f ( − x ) f(-x) f ( − x ) .
f ( − x ) = x 4 + 2 x 2 − 3 x − 1 f(-x)=x^4+2x^2-3x-1 f ( − x ) = x 4 + 2 x 2 − 3 x − 1
The only sign change is between 2 x 2 2x^2 2 x 2 and − 3 x -3x − 3 x . Therefore, the number of negative roots is 1 1 1 .
The remaining roots are imaginary roots. Therefore, imaginary roots is 4 − 1 − 1 = 2 4-1-1=2 4 − 1 − 1 = 2 .
(c) Prove that zero is an eigenvalue of a square matrix.
As per Cayley-Hamilton theorem, any square matrix satisfies its characteristic equation ψ A ( x ) \psi_A(x) ψ A ( x ) as follows:
ψ A ( x ) = c 0 x n + c 1 x n − 1 + … + c n − 1 x + c n = 0 ( 1 ) \begin{align*}
\psi_A(x)=c_0x^n+c_1x^{n-1}+\ldots+c_{n-1}x+c_n=0&&&&&&&&&&(1)
\end{align*} ψ A ( x ) = c 0 x n + c 1 x n − 1 + … + c n − 1 x + c n = 0 ( 1 )
But for a square matrix A A A , its determinant is: det A = 0 \det A=0 det A = 0 . And in the characteristic equation ( 1 ) (1) ( 1 ) :
c n = det A = 0 c_n=\det A=0 c n = det A = 0
Therefore, rewriting the characteristic equation, we get:
ψ A ( x ) = c 0 x n + c 1 x n − 1 + … + c n − 1 x = 0 \psi_A(x)=c_0x^n+c_1x^{n-1}+\ldots+c_{n-1}x=0 ψ A ( x ) = c 0 x n + c 1 x n − 1 + … + c n − 1 x = 0
In the above equation, 0 0 0 satisfies ψ A ( x ) \psi_A(x) ψ A ( x ) , therby making it an eigenvalue.
Hence proved: Zero is an eigenvalue of a square matrix.
(d) Define consistent system of equations. Show that the following system of linear equations has infinite number of solutions:
x 1 + 2 x 2 = 674 3 x 1 + 6 x 2 = 2022 x_1+2x_2=674\\
3x_1+6x_2=2022 x 1 + 2 x 2 = 674 3 x 1 + 6 x 2 = 2022
Consistent system of equations : A system of equations for which a solution exists is said to be consistent system of equations. The solution could either be unique, or there might exist an infinite number of solutions, based on the following conditions:
p ( A ) = p ( A ∣ B ) = n p(A)=p(A|B)=n p ( A ) = p ( A ∣ B ) = n
p ( A ) = p ( A ∣ B ) < n p(A)=p(A|B)<n p ( A ) = p ( A ∣ B ) < n
Where,
p ( A ) p(A) p ( A ) is the rank of coefficient matrix,
p ( A ∣ B ) p(A|B) p ( A ∣ B ) is the rank of augmented matrix, and
n n n is the number of unknowns in the system of equations.
Given equations:
x 1 + 2 x 2 = 674 3 x 1 + 6 x 2 = 2022 x_1+2x_2=674\\
3x_1+6x_2=2022 x 1 + 2 x 2 = 674 3 x 1 + 6 x 2 = 2022
Creating the augmented matrix:
[ A ∣ B ] = [ 1 2 : 674 3 6 : 2022 ] = [ 1 2 : 674 0 0 : 0 ] [ By R 2 → R 2 − 3 R 1 ] \begin{align*}
[A|B]&=\left[\begin{matrix}
1&2&:&674\\
3&6&:&2022
\end{matrix}\right]\\
&=\left[\begin{matrix}
1&2&:&674\\
0&0&:&0
\end{matrix}\right] &&[\text{By}\ R_2\rightarrow R_2-3R_1]
\end{align*} [ A ∣ B ] = [ 1 3 2 6 : : 674 2022 ] = [ 1 0 2 0 : : 674 0 ] [ By R 2 → R 2 − 3 R 1 ]
The above is the row reduced echelon matrix. Therefore, we can get the following:
p ( A ) = 1 p(A)=1 p ( A ) = 1
p ( A ∣ B ) = 1 p(A|B)=1 p ( A ∣ B ) = 1
n = 2 n=2 n = 2
Since p ( A ) = p ( A ∣ B ) < n p(A)=p(A|B)<n p ( A ) = p ( A ∣ B ) < n , therefore there exists an infinite number of solutions for the given set of equations.
(e) Define rank of a matrix. Find the rank of the following matrix:
( 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 ) \left(\begin{matrix}
1&0&0&0\\
1&1&0&0\\
0&0&1&0\\
0&0&0&1
\end{matrix}\right) 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1
Rank of matrix: Rank of a matrix A A A , is defined to be the greatest positive integer r r r , such that A A A has atleast one non-zero minor order of r r r . The rank of A A A is also called the determinant rank of A A A .
Given matrix:
= [ 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 ] = [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ] [ By R 2 → R 2 − R 1 ] \begin{align*}
&=\left[\begin{matrix}
1&0&0&0\\
1&1&0&0\\
0&0&1&0\\
0&0&0&1
\end{matrix}\right]\\
&=\left[\begin{matrix}
1&0&0&0\\
0&1&0&0\\
0&0&1&0\\
0&0&0&1
\end{matrix}\right]&&[\text{By}\ R_2\rightarrow R_2-R_1]
\end{align*} = 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 [ By R 2 → R 2 − R 1 ]
The above is the row-reduced echelon form. Therefore the rank of the matrix can be found by counting the number of non-zero rows in the row-reduced echelon form. Rank of the matrix is 4 4 4 .
(f) If a , b , c , d a, b, c, d a , b , c , d be positive real numbers, then find the minimum value of the following. When does the minimum value occur?
a b + b c + c d + d a \frac ab+\frac bc+\frac cd+\frac da b a + c b + d c + a d
Group B
6 × 4 = 24 6\times4=24 6 × 4 = 24
2. Answer any four questions
(a) If tan ( i log x − i y x + i y ) = 2 \tan\left(i\log\frac{x-iy}{x+iy}\right)=2 tan ( i log x + i y x − i y ) = 2 , then prove that x 2 − y 2 = x y x^2-y^2=xy x 2 − y 2 = x y .
(b) If x , y , z x,y,z x , y , z are positive real numbers and x + y + z = 1 x+y+z=1 x + y + z = 1 , prove that:
8 x y z ≤ ( 1 − x ) ( 1 − y ) ( 1 − z ) ≤ 8 27 8xyz\le(1-x)(1-y)(1-z)\le\frac8{27} 8 x yz ≤ ( 1 − x ) ( 1 − y ) ( 1 − z ) ≤ 27 8
(c) Obtain a row echelon matrix which is row equivalent to the following matrix and hence find its rank.
( 0 0 2 2 0 1 3 2 4 1 2 6 2 6 2 3 9 1 10 6 ) \left(\begin{matrix}
0&0&2&2&0\\
1&3&2&4&1\\
2&6&2&6&2\\
3&9&1&10&6
\end{matrix}\right) 0 1 2 3 0 3 6 9 2 2 2 1 2 4 6 10 0 1 2 6
The matrix is:
= ( 0 0 2 2 0 1 3 2 4 1 2 6 2 6 2 3 9 1 10 6 ) = ( 1 3 2 4 1 0 0 2 2 0 2 6 2 6 2 3 9 1 10 6 ) [ R 2 ↔ R 1 ] = ( 1 3 2 4 1 0 0 2 2 0 0 0 − 2 − 2 0 0 0 − 5 − 2 3 ) [ R 3 → R 3 − 2 R 1 , R 4 → R 4 − 3 R 1 ] = ( 1 3 2 4 1 0 0 − 5 − 2 3 0 0 − 2 − 2 0 0 0 2 2 0 ) [ R 2 ↔ R 4 ] = ( 1 3 0 2 1 0 0 − 3 0 3 0 0 − 2 − 2 0 0 0 0 0 0 ) [ R 4 → R 4 + R 3 , R 2 → R 2 − R 3 , R 1 → R 1 + R 3 ] = ( 1 3 0 2 1 0 0 1 0 − 1 0 0 1 1 0 0 0 0 0 0 ) [ R 3 → − 1 2 R 3 , R 2 → − 1 3 R 2 ] = ( 1 3 0 2 1 0 0 1 0 − 1 0 0 0 1 1 0 0 0 0 0 ) [ R 3 → R 3 − R 2 ] = ( 1 3 0 0 − 1 0 0 1 0 − 1 0 0 0 1 1 0 0 0 0 0 ) [ R 1 → R 1 − 2 R 3 ] \begin{align*}
&=\left(\begin{matrix}
0&0&2&2&0\\
1&3&2&4&1\\
2&6&2&6&2\\
3&9&1&10&6
\end{matrix}\right)\\
&=\left(\begin{matrix}
1&3&2&4&1\\
0&0&2&2&0\\
2&6&2&6&2\\
3&9&1&10&6
\end{matrix}\right)&&[R_2\leftrightarrow R_1]\\
&=\left(\begin{matrix}
1&3&2&4&1\\
0&0&2&2&0\\
0&0&-2&-2&0\\
0&0&-5&-2&3
\end{matrix}\right)&&[R_3\rightarrow R_3-2R_1,R_4\rightarrow R_4-3R_1]\\
&=\left(\begin{matrix}
1&3&2&4&1\\
0&0&-5&-2&3\\
0&0&-2&-2&0\\
0&0&2&2&0
\end{matrix}\right)&&[R_2\leftrightarrow R_4]\\
&=\left(\begin{matrix}
1&3&0&2&1\\
0&0&-3&0&3\\
0&0&-2&-2&0\\
0&0&0&0&0
\end{matrix}\right)&&[R_4\rightarrow R_4+R_3, R_2\rightarrow R_2-R_3,R_1\rightarrow R_1+R_3]\\
&=\left(\begin{matrix}
1&3&0&2&1\\
0&0&1&0&-1\\
0&0&1&1&0\\
0&0&0&0&0
\end{matrix}\right)&&[R_3\rightarrow -\frac12 R_3, R_2\rightarrow -\frac13 R_2]\\
&=\left(\begin{matrix}
1&3&0&2&1\\
0&0&1&0&-1\\
0&0&0&1&1\\
0&0&0&0&0
\end{matrix}\right)&&[R_3\rightarrow R_3-R_2]\\
&=\left(\begin{matrix}
1&3&0&0&-1\\
0&0&1&0&-1\\
0&0&0&1&1\\
0&0&0&0&0
\end{matrix}\right)&&[R_1\rightarrow R_1-2R_3]\\
\end{align*} = 0 1 2 3 0 3 6 9 2 2 2 1 2 4 6 10 0 1 2 6 = 1 0 2 3 3 0 6 9 2 2 2 1 4 2 6 10 1 0 2 6 = 1 0 0 0 3 0 0 0 2 2 − 2 − 5 4 2 − 2 − 2 1 0 0 3 = 1 0 0 0 3 0 0 0 2 − 5 − 2 2 4 − 2 − 2 2 1 3 0 0 = 1 0 0 0 3 0 0 0 0 − 3 − 2 0 2 0 − 2 0 1 3 0 0 = 1 0 0 0 3 0 0 0 0 1 1 0 2 0 1 0 1 − 1 0 0 = 1 0 0 0 3 0 0 0 0 1 0 0 2 0 1 0 1 − 1 1 0 = 1 0 0 0 3 0 0 0 0 1 0 0 0 0 1 0 − 1 − 1 1 0 [ R 2 ↔ R 1 ] [ R 3 → R 3 − 2 R 1 , R 4 → R 4 − 3 R 1 ] [ R 2 ↔ R 4 ] [ R 4 → R 4 + R 3 , R 2 → R 2 − R 3 , R 1 → R 1 + R 3 ] [ R 3 → − 2 1 R 3 , R 2 → − 3 1 R 2 ] [ R 3 → R 3 − R 2 ] [ R 1 → R 1 − 2 R 3 ]
The above is the row reduced echelon form of the matrix. The rank can be found out by counting the number of non-zero rows, which is 3 3 3 .
(d) State Cayley-Hamilton theorem. Use it to find the inverse of the following matrix:
( 1 − 1 0 1 2 − 1 3 2 − 2 ) \left(
\begin{matrix}
1&-1&0\\
1&2&-1\\
3&2&-2
\end{matrix}
\right) 1 1 3 − 1 2 2 0 − 1 − 2
Cayley-Hamilton theorem states that, any square matrix A A A without exception satisfies its characteristic equation, ψ A ( x ) \psi_A(x) ψ A ( x ) , where x n x_n x n can be replaced with A A A :
ψ A ( x ) = c 0 x n + c 1 x n − 1 + … + c n − 1 x + c n = 0 \psi_A(x)=c_0x^n+c_1x^{n-1}+\ldots+c_{n-1}x+c_n=0 ψ A ( x ) = c 0 x n + c 1 x n − 1 + … + c n − 1 x + c n = 0
Finding the characteristic equation of the above matrix:
∣ A − λ I n ∣ = 0 ⇒ ∣ [ 1 − 1 0 1 2 − 1 3 2 − 2 ] − λ [ 1 0 0 0 1 0 0 0 1 ] ∣ = 0 ⇒ ∣ 1 − λ − 1 0 1 2 − λ − 1 3 2 − 2 − λ ∣ = 0 ⇒ ( 1 − λ ) [ ( 2 − λ ) ( − 2 − λ ) + 2 ] + ( − 2 − λ + 3 ) = 0 ⇒ ( 1 − λ ) ( λ 2 − 2 ) + ( 1 − λ ) = 0 ⇒ ( 1 − λ ) ( λ 2 − 1 ) = 0 ⇒ λ 2 − λ 3 − 1 + λ = 0 ⇒ λ 3 − λ 2 − λ + 1 = 0 \begin{align*}
&|A-\lambda I_n|=0\\
\Rightarrow\ &\left|\left[
\begin{matrix}
1&-1&0\\
1&2&-1\\
3&2&-2
\end{matrix}
\right]-\lambda\left[
\begin{matrix}
1&0&0\\
0&1&0\\
0&0&1
\end{matrix}
\right]\right|=0\\
\Rightarrow\ &\left|
\begin{matrix}
1-\lambda&-1&0\\
1&2-\lambda&-1\\
3&2&-2-\lambda
\end{matrix}
\right|=0\\
\Rightarrow\ &(1-\lambda)[(2-\lambda)(-2-\lambda)+2]+(-2-\lambda+3)=0\\
\Rightarrow\ &(1-\lambda)(\lambda^2-2)+(1-\lambda)=0\\
\Rightarrow\ &(1-\lambda)(\lambda^2-1)=0\\
\Rightarrow\ &\lambda^2-\lambda^3-1+\lambda=0\\
\Rightarrow\ &\lambda^3-\lambda^2-\lambda+1=0
\end{align*} ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ∣ A − λ I n ∣ = 0 1 1 3 − 1 2 2 0 − 1 − 2 − λ 1 0 0 0 1 0 0 0 1 = 0 1 − λ 1 3 − 1 2 − λ 2 0 − 1 − 2 − λ = 0 ( 1 − λ ) [( 2 − λ ) ( − 2 − λ ) + 2 ] + ( − 2 − λ + 3 ) = 0 ( 1 − λ ) ( λ 2 − 2 ) + ( 1 − λ ) = 0 ( 1 − λ ) ( λ 2 − 1 ) = 0 λ 2 − λ 3 − 1 + λ = 0 λ 3 − λ 2 − λ + 1 = 0
As per Cayley-Hamilton theorem: λ = A \lambda=A λ = A . Therefore,
A 3 − A 2 − A + I n = 0 ⇒ A − 1 ( A 3 − A 2 − A + I n ) = 0 ⇒ A 2 − A − I n + A − 1 = 0 ⇒ A − 1 = A + I n − A 2 ⇒ A − 1 = [ 1 − 1 0 1 2 − 1 3 2 − 2 ] + [ 1 0 0 0 1 0 0 0 1 ] − [ 0 − 3 1 0 1 0 − 1 − 3 2 ] ⇒ A − 1 = [ 2 2 − 1 1 2 − 1 4 5 − 3 ] \begin{align*}
&A^3-A^2-A+I_n=0\\
\Rightarrow\ &A^{-1}(A^3-A^2-A+I_n)=0\\
\Rightarrow\ &A^2-A-I_n+A^{-1}=0\\
\Rightarrow\ &A^{-1}=A+I_n-A^2\\
\Rightarrow\ &A^{-1}=\left[
\begin{matrix}
1&-1&0\\
1&2&-1\\
3&2&-2
\end{matrix}
\right]+\left[
\begin{matrix}
1&0&0\\
0&1&0\\
0&0&1
\end{matrix}
\right]-\left[
\begin{matrix}
0&-3&1\\
0&1&0\\
-1&-3&2
\end{matrix}
\right]\\
\Rightarrow\ &A^{-1}=\left[
\begin{matrix}
2&2&-1\\
1&2&-1\\
4&5&-3
\end{matrix}
\right]
\end{align*} ⇒ ⇒ ⇒ ⇒ ⇒ A 3 − A 2 − A + I n = 0 A − 1 ( A 3 − A 2 − A + I n ) = 0 A 2 − A − I n + A − 1 = 0 A − 1 = A + I n − A 2 A − 1 = 1 1 3 − 1 2 2 0 − 1 − 2 + 1 0 0 0 1 0 0 0 1 − 0 0 − 1 − 3 1 − 3 1 0 2 A − 1 = 2 1 4 2 2 5 − 1 − 1 − 3
Therefore, inverse of matrix A is:
A − 1 = [ 2 2 − 1 1 2 − 1 4 5 − 3 ] A^{-1}=\left[
\begin{matrix}
2&2&-1\\
1&2&-1\\
4&5&-3
\end{matrix}
\right] A − 1 = 2 1 4 2 2 5 − 1 − 1 − 3
(e) Let α , β , γ \alpha,\beta,\gamma α , β , γ be the roots of the equation 2 x 3 + 3 x 2 − x − 1 = 0 2x^3+3x^2-x-1=0 2 x 3 + 3 x 2 − x − 1 = 0 , find the equation whose roots are
β + γ α , γ + α β , α + β γ \frac{\beta+\gamma}{\alpha},\frac{\gamma+\alpha}{\beta},\frac{\alpha+\beta}{\gamma} α β + γ , β γ + α , γ α + β
Given equation:
f ( x ) = 2 x 3 + 3 x 2 − x − 1 = 0 f(x)=2x^3+3x^2-x-1=0 f ( x ) = 2 x 3 + 3 x 2 − x − 1 = 0
Let y = β + γ α y=\frac{\beta+\gamma}{\alpha} y = α β + γ
y = β + γ α ⇒ α y = β + γ ⇒ α y = ∑ α − α ⇒ α y = − 3 2 − α ⇒ α ( y + 1 ) = − 3 2 ∴ α = − 3 2 ( y + 1 ) \begin{align*}
y&=\frac{\beta+\gamma}{\alpha}\\
\Rightarrow \alpha y&=\beta+\gamma\\
\Rightarrow \alpha y&=\sum\alpha-\alpha\\
\Rightarrow \alpha y&=-\frac32-\alpha\\
\Rightarrow \alpha(y+1)&=-\frac32\\
\therefore \alpha&=\frac{-3}{2(y+1)}
\end{align*} y ⇒ α y ⇒ α y ⇒ α y ⇒ α ( y + 1 ) ∴ α = α β + γ = β + γ = ∑ α − α = − 2 3 − α = − 2 3 = 2 ( y + 1 ) − 3
Now α \alpha α is a root of the equation f ( x ) f(x) f ( x ) . Therefore:
f ( α ) = 2 α 3 + 3 α 2 − α − 1 = 0 ⇒ 2 ( − 3 2 ( y + 1 ) ) 3 + 3 ( − 3 2 ( y + 1 ) ) 2 − ( − 3 2 ( y + 1 ) ) − 1 = 0 ⇒ − 27 4 ( y + 1 ) 3 + 27 4 ( y + 1 ) 2 + 3 2 ( y + 1 ) − 1 = 0 ⇒ − 27 + 27 ( y + 1 ) + 6 ( y + 1 ) 2 − 4 ( y + 1 ) 3 = 0 ⇒ − 4 y 3 − 6 y 2 + 27 y + 2 = 0 ⇒ 4 y 3 + 6 y 2 − 27 y − 2 = 0 \begin{align*}
f(\alpha)&=2\alpha^3+3\alpha^2-\alpha-1=0\\
&\Rightarrow 2\left(\frac{-3}{2(y+1)}\right)^3+3\left(\frac{-3}{2(y+1)}\right)^2-\left(\frac{-3}{2(y+1)}\right)-1=0\\
&\Rightarrow\frac{-27}{4(y+1)^3}+\frac{27}{4(y+1)^2}+\frac{3}{2(y+1)}-1=0\\
&\Rightarrow-27+27(y+1)+6(y+1)^2-4(y+1)^3=0\\
&\Rightarrow-4y^3-6y^2+27y+2=0\\
&\Rightarrow4y^3+6y^2-27y-2=0
\end{align*} f ( α ) = 2 α 3 + 3 α 2 − α − 1 = 0 ⇒ 2 ( 2 ( y + 1 ) − 3 ) 3 + 3 ( 2 ( y + 1 ) − 3 ) 2 − ( 2 ( y + 1 ) − 3 ) − 1 = 0 ⇒ 4 ( y + 1 ) 3 − 27 + 4 ( y + 1 ) 2 27 + 2 ( y + 1 ) 3 − 1 = 0 ⇒ − 27 + 27 ( y + 1 ) + 6 ( y + 1 ) 2 − 4 ( y + 1 ) 3 = 0 ⇒ − 4 y 3 − 6 y 2 + 27 y + 2 = 0 ⇒ 4 y 3 + 6 y 2 − 27 y − 2 = 0
Therefore the transformed equation f ( x ) ′ f(x)' f ( x ) ′ is:
f ( x ) ′ = 4 x 3 + 6 x 2 − 27 x − 2 = 0 f(x)'=4x^3+6x^2-27x-2=0 f ( x ) ′ = 4 x 3 + 6 x 2 − 27 x − 2 = 0
(f) Solve by Cardan's method x 3 − 3 x − 1 = 0 x^3-3x-1=0 x 3 − 3 x − 1 = 0 . Hence find cos π 9 cos 7 π 9 cos 13 π 9 \cos{\frac\pi9}\cos{\frac{7\pi}9}\cos{\frac{13\pi}9} cos 9 π cos 9 7 π cos 9 13 π .
Given equation:
f ( x ) = x 3 − 3 x − 1 = 0 f(x)=x^3-3x-1=0 f ( x ) = x 3 − 3 x − 1 = 0
Let z = u 1 / 3 + v 1 / 3 z=u^{1/3}+v^{1/3} z = u 1/3 + v 1/3 .
z = u 1 / 3 + v 1 / 3 ⇒ z 3 = u + v + 3 u 1 / 3 v 1 / 3 ( u 1 / 3 + v 1 / 3 ) ⇒ z 3 − 3 u 1 / 3 v 1 / 3 z − ( u + v ) = 0 [ ∵ u 1 / 3 + v 1 / 3 = z ] \begin{align*}
&z=u^{1/3}+v^{1/3}\\
\Rightarrow\ &z^3=u+v+3u^{1/3}v^{1/3}(u^{1/3}+v^{1/3})\\
\Rightarrow\ &z^3-3u^{1/3}v^{1/3}z-(u+v)=0&&[\because u^{1/3}+v^{1/3}=z]
\end{align*} ⇒ ⇒ z = u 1/3 + v 1/3 z 3 = u + v + 3 u 1/3 v 1/3 ( u 1/3 + v 1/3 ) z 3 − 3 u 1/3 v 1/3 z − ( u + v ) = 0 [ ∵ u 1/3 + v 1/3 = z ]
Comparing the above equation with f ( x ) f(x) f ( x ) , we get:
u 1 / 3 v 1 / 3 = 1 ⇒ u v = 1 u^{1/3}v^{1/3}=1\Rightarrow uv=1 u 1/3 v 1/3 = 1 ⇒ uv = 1 , and
u + v = 1 u+v=1 u + v = 1
Creating a quadratic equation with the above roots:
g ( x ) = x 2 − ( u + v ) x + u v = 0 ⇒ x 2 − x + 1 = 0 ⇒ x = 1 ± − 3 2 ⇒ x = 1 2 + i 3 2 , 1 2 − i 3 2 ⇒ x = cos π 3 + i sin π 3 , cos π 3 − i sin π 3 \begin{align*}
g(x)&=x^2-(u+v)x+uv=0\\
&\Rightarrow x^2-x+1=0\\
&\Rightarrow x=\frac{1\pm\sqrt{-3}}{2}\\
&\Rightarrow x=\frac12+i\frac{\sqrt3}2,\frac12-i\frac{\sqrt3}2\\
&\Rightarrow x=\cos{\frac\pi3}+i\sin{\frac\pi3}, \cos{\frac\pi3}-i\sin{\frac\pi3}
\end{align*} g ( x ) = x 2 − ( u + v ) x + uv = 0 ⇒ x 2 − x + 1 = 0 ⇒ x = 2 1 ± − 3 ⇒ x = 2 1 + i 2 3 , 2 1 − i 2 3 ⇒ x = cos 3 π + i sin 3 π , cos 3 π − i sin 3 π
Considering:
u = cos π 3 + i sin π 3 ⇒ u 1 / 3 = cos ( 2 k π + π / 3 3 ) + i sin ( 2 k π + π / 3 3 ) = cos ( 6 k π + π 9 ) + i sin ( 6 k π + π 9 ) \begin{align*}
u&=\cos{\frac\pi3}+i\sin{\frac\pi3}\\
\Rightarrow u^{1/3}&=\cos\left(\frac{2k\pi+\pi/3}{3}\right)+i\sin\left(\frac{2k\pi+\pi/3}{3}\right)\\
&=\cos\left(\frac{6k\pi+\pi}{9}\right)+i\sin\left(\frac{6k\pi+\pi}{9}\right)
\end{align*} u ⇒ u 1/3 = cos 3 π + i sin 3 π = cos ( 3 2 kπ + π /3 ) + i sin ( 3 2 kπ + π /3 ) = cos ( 9 6 kπ + π ) + i sin ( 9 6 kπ + π )
and,
v = cos π 3 − i sin π 3 ⇒ v 1 / 3 = cos ( 2 k π + π / 3 3 ) − i sin ( 2 k π + π / 3 3 ) = cos ( 6 k π + π 9 ) − i sin ( 6 k π + π 9 ) \begin{align*}
v&=\cos{\frac\pi3}-i\sin{\frac\pi3}\\
\Rightarrow v^{1/3}&=\cos\left(\frac{2k\pi+\pi/3}{3}\right)-i\sin\left(\frac{2k\pi+\pi/3}{3}\right)\\
&=\cos\left(\frac{6k\pi+\pi}{9}\right)-i\sin\left(\frac{6k\pi+\pi}{9}\right)
\end{align*} v ⇒ v 1/3 = cos 3 π − i sin 3 π = cos ( 3 2 kπ + π /3 ) − i sin ( 3 2 kπ + π /3 ) = cos ( 9 6 kπ + π ) − i sin ( 9 6 kπ + π )
Now using these to find the roots of the cubic equation are unique for k = 0 , 1 , 2 k=0,1,2 k = 0 , 1 , 2 :
For k = 0 k=0 k = 0 :
x 1 = u 1 / 3 + v 1 / 3 = 2 cos π 9 \begin{align*}
x_1&=u^{1/3}+v^{1/3}\\
&=2\cos\frac{\pi}{9}
\end{align*} x 1 = u 1/3 + v 1/3 = 2 cos 9 π
For k = 1 k=1 k = 1 :
x 2 = u 1 / 3 + v 1 / 3 = 2 cos 7 π 9 \begin{align*}
x_2&=u^{1/3}+v^{1/3}\\
&=2\cos\frac{7\pi}{9}
\end{align*} x 2 = u 1/3 + v 1/3 = 2 cos 9 7 π
For k = 2 k=2 k = 2 :
x 3 = u 1 / 3 + v 1 / 3 = 2 cos 13 π 9 \begin{align*}
x_3&=u^{1/3}+v^{1/3}\\
&=2\cos\frac{13\pi}{9}
\end{align*} x 3 = u 1/3 + v 1/3 = 2 cos 9 13 π
Therefore, for f ( x ) = x 3 − 3 x − 1 = 0 f(x)=x^3-3x-1=0 f ( x ) = x 3 − 3 x − 1 = 0 , the roots are:
x = 2 cos π 9 , 2 cos 7 π 9 , 2 cos 13 π 9 x=2\cos\frac{\pi}{9},2\cos\frac{7\pi}{9},2\cos\frac{13\pi}{9} x = 2 cos 9 π , 2 cos 9 7 π , 2 cos 9 13 π
We know for the above cubic equation:
x 1 x 2 x 3 = − 1 ⇒ 2 3 ( cos π 9 cos 7 π 9 cos 13 π 9 ) 1 ∴ cos π 9 cos 7 π 9 cos 13 π 9 = 1 8 \begin{align*}
&x_1x_2x_3=-1\\
\Rightarrow\ &2^3\left(\cos\frac{\pi}{9}\cos\frac{7\pi}{9}\cos\frac{13\pi}{9}\right)1\\
\therefore\ &\cos\frac{\pi}{9}\cos\frac{7\pi}{9}\cos\frac{13\pi}{9}=\frac{1}{8}
\end{align*} ⇒ ∴ x 1 x 2 x 3 = − 1 2 3 ( cos 9 π cos 9 7 π cos 9 13 π ) 1 cos 9 π cos 9 7 π cos 9 13 π = 8 1
Group C
6 × 2 = 12 6\times2=12 6 × 2 = 12
3. Answer any two questions
(a) (i) State De-Moivre's theorem for integer and rational indices. Use it to prove that
cos 5 ϕ = 16 cos 5 ϕ − 20 cos 3 ϕ + 5 cos ϕ \cos 5\phi=16\cos^5\phi-20\cos^3\phi+5\cos\phi cos 5 ϕ = 16 cos 5 ϕ − 20 cos 3 ϕ + 5 cos ϕ
De-Moivre's theorem: When n n n is a fraction, positive or negative, and ϕ \phi ϕ is a real number, then cos n ϕ + i sin n ϕ \cos n\phi+i\sin n\phi cos n ϕ + i sin n ϕ is one of the values of ( cos n ϕ + i sin n ϕ ) n (\cos n\phi+i\sin n\phi)^n ( cos n ϕ + i sin n ϕ ) n . As:
( cos ϕ + i sin ϕ ) n = cos n ϕ + i sin n ϕ (\cos\phi+i\sin\phi)^n=\cos n\phi+i\sin n\phi ( cos ϕ + i sin ϕ ) n = cos n ϕ + i sin n ϕ
Considering ( cos ϕ + i sin ϕ ) 5 (\cos\phi+i\sin\phi)^5 ( cos ϕ + i sin ϕ ) 5 :
( cos ϕ + i sin ϕ ) 5 = cos 5 ϕ + 5 C 1 cos 4 ϕ ⋅ i sin ϕ + 5 C 2 cos 3 ϕ ⋅ i 2 sin 2 ϕ + 5 C 3 cos 2 ϕ ⋅ i 3 sin 3 ϕ + 5 C 4 cos ϕ ⋅ i 4 sin 4 ϕ + i 5 sin 5 ϕ = cos 5 ϕ + 5 cos 4 ϕ ⋅ i sin ϕ − 10 cos 3 ϕ sin 2 ϕ − 10 cos 2 ϕ ⋅ i sin 3 θ + 5 cos ϕ sin 4 ϕ + i sin 5 ϕ = ( cos 5 ϕ − 10 cos 3 sin 2 ϕ + 5 cos ϕ sin 4 ϕ ) + i ( 5 cos 4 ϕ sin ϕ − 10 cos 2 ϕ sin 3 ϕ + sin 5 ϕ ) \begin{align*}
(\cos\phi+i\sin\phi)^5&=\cos^5\phi+\ ^5C_1\cos^4\phi\cdot i\sin\phi+\ ^5C_2\cos^3\phi\cdot i^2\sin^2\phi+\ ^5C_3\cos^2\phi\cdot i^3\sin^3\phi+\ ^5C_4\cos\phi\cdot i^4\sin^4\phi+i^5\sin^5\phi\\
&=\cos^5\phi+5\cos^4\phi\cdot i\sin\phi-10\cos^3\phi\sin^2\phi-10\cos^2\phi\cdot i\sin^3\theta+5\cos\phi\sin^4\phi+i\sin^5\phi\\
&=(\cos^5\phi-10\cos^3\sin^2\phi+5\cos\phi\sin^4\phi)+i(5\cos^4\phi\sin\phi-10\cos^2\phi\sin^3\phi+\sin^5\phi)
\end{align*} ( cos ϕ + i sin ϕ ) 5 = cos 5 ϕ + 5 C 1 cos 4 ϕ ⋅ i sin ϕ + 5 C 2 cos 3 ϕ ⋅ i 2 sin 2 ϕ + 5 C 3 cos 2 ϕ ⋅ i 3 sin 3 ϕ + 5 C 4 cos ϕ ⋅ i 4 sin 4 ϕ + i 5 sin 5 ϕ = cos 5 ϕ + 5 cos 4 ϕ ⋅ i sin ϕ − 10 cos 3 ϕ sin 2 ϕ − 10 cos 2 ϕ ⋅ i sin 3 θ + 5 cos ϕ sin 4 ϕ + i sin 5 ϕ = ( cos 5 ϕ − 10 cos 3 sin 2 ϕ + 5 cos ϕ sin 4 ϕ ) + i ( 5 cos 4 ϕ sin ϕ − 10 cos 2 ϕ sin 3 ϕ + sin 5 ϕ )
But we know: ( cos ϕ + i sin ϕ ) 5 = cos 5 ϕ + i sin 5 ϕ (\cos\phi+i\sin\phi)^5=\cos5\phi+i\sin5\phi ( cos ϕ + i sin ϕ ) 5 = cos 5 ϕ + i sin 5 ϕ . Comparing this with the equation above, we get:
cos 5 ϕ = cos 5 ϕ − 10 cos 3 sin 2 ϕ + 5 cos ϕ sin 4 ϕ = cos 5 ϕ − 10 cos 3 ϕ ( 1 − cos 2 ϕ ) + 5 cos ϕ ( 1 − cos 2 ϕ ) 2 = cos 5 ϕ − 10 cos 3 ϕ + 10 cos 5 ϕ + 5 cos ϕ ( 1 + cos 4 ϕ − 2 cos 2 ϕ ) = 11 cos 5 ϕ − 10 cos 3 ϕ + 5 cos ϕ + 5 cos 5 ϕ − 10 cos 3 ϕ = 16 cos 5 ϕ − 20 cos 3 ϕ + 5 cos ϕ \begin{align*}
\cos5\phi&=\cos^5\phi-10\cos^3\sin^2\phi+5\cos\phi\sin^4\phi\\
&=\cos^5\phi-10\cos^3\phi(1-\cos^2\phi)+5\cos\phi(1-\cos^2\phi)^2\\
&=\cos^5\phi-10\cos^3\phi+10\cos^5\phi+5\cos\phi(1+\cos^4\phi-2\cos^2\phi)\\
&=11\cos^5\phi-10\cos^3\phi+5\cos\phi+5\cos^5\phi-10\cos^3\phi\\
&=16\cos^5\phi-20\cos^3\phi+5\cos\phi
\end{align*} cos 5 ϕ = cos 5 ϕ − 10 cos 3 sin 2 ϕ + 5 cos ϕ sin 4 ϕ = cos 5 ϕ − 10 cos 3 ϕ ( 1 − cos 2 ϕ ) + 5 cos ϕ ( 1 − cos 2 ϕ ) 2 = cos 5 ϕ − 10 cos 3 ϕ + 10 cos 5 ϕ + 5 cos ϕ ( 1 + cos 4 ϕ − 2 cos 2 ϕ ) = 11 cos 5 ϕ − 10 cos 3 ϕ + 5 cos ϕ + 5 cos 5 ϕ − 10 cos 3 ϕ = 16 cos 5 ϕ − 20 cos 3 ϕ + 5 cos ϕ
Hence proved that:
cos 5 ϕ = 16 cos 5 ϕ − 20 cos 3 ϕ + 5 cos ϕ \cos 5\phi=16\cos^5\phi-20\cos^3\phi+5\cos\phi cos 5 ϕ = 16 cos 5 ϕ − 20 cos 3 ϕ + 5 cos ϕ
(a) (ii) Find mod z \text{mod }z mod z and arg z \arg z arg z where z = 1 + i tan 3 π 5 z=1+i\tan\frac{3\pi}{5} z = 1 + i tan 5 3 π .
(b) (i) Find the eigenvalues and the corresponding eigenvectors of the matrix
[ 2 2 1 1 3 1 1 2 2 ] \left[
\begin{matrix}
2&2&1\\
1&3&1\\
1&2&2
\end{matrix}
\right] 2 1 1 2 3 2 1 1 2
Let the matrix be A A A , as:
A = [ 2 2 1 1 3 1 1 2 2 ] ⇒ ψ A ( x ) = ∣ A − λ I n ∣ = 0 ⇒ ∣ 2 − λ 2 1 1 3 − λ 1 1 2 2 − λ ∣ = 0 ⇒ ( 2 − λ ) [ ( 3 − λ ) ( 2 − λ ) − 2 ] − 2 ( 2 − λ − 1 ) + ( 2 − 3 + λ ) = 0 ⇒ ( 2 − λ ) ( 6 − 5 λ + λ 2 − 2 ) − 2 ( 1 − λ ) − ( 1 − λ ) = 0 ⇒ ( 2 − λ ) ( λ 2 − 5 λ + 4 ) − 3 ( 1 − λ ) = 0 ⇒ 2 λ 2 − 10 λ + 8 − λ 3 + 5 λ 2 − 4 λ − 3 + 3 λ = 0 ⇒ − λ 3 + 7 λ 2 − 11 λ + 5 = 0 ⇒ λ 3 − 7 λ 2 + 11 λ − 5 = 0 ⇒ ( λ − 1 ) ( λ 2 − 6 λ + 5 ) = 0 ⇒ ( λ − 1 ) ( λ − 1 ) ( λ − 5 ) = 0 ∴ λ = 1 , 1 , 5 \begin{align*}
A&=\left[
\begin{matrix}
2&2&1\\
1&3&1\\
1&2&2
\end{matrix}
\right]\\
\Rightarrow\psi_A(x)&=|A-\lambda I_n|=0\\
&\Rightarrow\left|
\begin{matrix}
2-\lambda&2&1\\
1&3-\lambda&1\\
1&2&2-\lambda
\end{matrix}
\right|=0\\
&\Rightarrow(2-\lambda)[(3-\lambda)(2-\lambda)-2]-2(2-\lambda-1)+(2-3+\lambda)=0\\
&\Rightarrow(2-\lambda)(6-5\lambda+\lambda^2-2)-2(1-\lambda)-(1-\lambda)=0\\
&\Rightarrow(2-\lambda)(\lambda^2-5\lambda+4)-3(1-\lambda)=0\\
&\Rightarrow2\lambda^2-10\lambda+8-\lambda^3+5\lambda^2-4\lambda-3+3\lambda=0\\
&\Rightarrow-\lambda^3+7\lambda^2-11\lambda+5=0\\
&\Rightarrow\lambda^3-7\lambda^2+11\lambda-5=0\\
&\Rightarrow(\lambda-1)(\lambda^2-6\lambda+5)=0\\
&\Rightarrow(\lambda-1)(\lambda-1)(\lambda-5)=0\\
&\therefore \lambda=1,1,5
\end{align*} A ⇒ ψ A ( x ) = 2 1 1 2 3 2 1 1 2 = ∣ A − λ I n ∣ = 0 ⇒ 2 − λ 1 1 2 3 − λ 2 1 1 2 − λ = 0 ⇒ ( 2 − λ ) [( 3 − λ ) ( 2 − λ ) − 2 ] − 2 ( 2 − λ − 1 ) + ( 2 − 3 + λ ) = 0 ⇒ ( 2 − λ ) ( 6 − 5 λ + λ 2 − 2 ) − 2 ( 1 − λ ) − ( 1 − λ ) = 0 ⇒ ( 2 − λ ) ( λ 2 − 5 λ + 4 ) − 3 ( 1 − λ ) = 0 ⇒ 2 λ 2 − 10 λ + 8 − λ 3 + 5 λ 2 − 4 λ − 3 + 3 λ = 0 ⇒ − λ 3 + 7 λ 2 − 11 λ + 5 = 0 ⇒ λ 3 − 7 λ 2 + 11 λ − 5 = 0 ⇒ ( λ − 1 ) ( λ 2 − 6 λ + 5 ) = 0 ⇒ ( λ − 1 ) ( λ − 1 ) ( λ − 5 ) = 0 ∴ λ = 1 , 1 , 5
Therefore: λ = 1 , 1 , 5 \lambda=1,1,5 λ = 1 , 1 , 5 are the necessary eigenvalues. Now finding the eigenvectors:
For λ = 5 \lambda=5 λ = 5 :
ψ A ( 5 ) = ∣ A − 5 I n ∣ = ∣ − 3 2 1 1 − 2 1 1 2 − 3 ∣ \psi_A(5)=|A-5I_n|=\left|
\begin{matrix}
-3&2&1\\
1&-2&1\\
1&2&-3
\end{matrix}
\right| ψ A ( 5 ) = ∣ A − 5 I n ∣ = − 3 1 1 2 − 2 2 1 1 − 3
Solving for x 1 , x 2 , x 3 x_1,x_2,x_3 x 1 , x 2 , x 3 :
x 1 ∣ − 2 1 2 − 3 ∣ = − x 2 ∣ 1 1 1 − 3 ∣ = x 3 ∣ 1 − 2 1 2 ∣ = x 1 4 = x 2 4 = x 3 4 = x 1 = x 2 = x 3 \begin{align*}
&\frac{x_1}{\left|
\begin{matrix}
-2&1\\
2&-3
\end{matrix}
\right|}=\frac{-x_2}{\left|
\begin{matrix}
1&1\\
1&-3
\end{matrix}
\right|}=\frac{x_3}{\left|
\begin{matrix}
1&-2\\
1&2
\end{matrix}
\right|}\\
&=\frac{x_1}{4}=\frac{x_2}{4}=\frac{x_3}{4}\\
&=x_1=x_2=x_3
\end{align*} − 2 2 1 − 3 x 1 = 1 1 1 − 3 − x 2 = 1 1 − 2 2 x 3 = 4 x 1 = 4 x 2 = 4 x 3 = x 1 = x 2 = x 3
Let x 1 = x 2 = x 3 = k x_1=x_2=x_3=k x 1 = x 2 = x 3 = k :
∴ ( x 1 x 2 x 3 ) λ = 5 = k ( 1 1 1 ) \therefore \left(
\begin{matrix}
x_1\\
x_2\\
x_3
\end{matrix}
\right)_{\lambda=5}=k\left(
\begin{matrix}
1\\
1\\
1
\end{matrix}
\right) ∴ x 1 x 2 x 3 λ = 5 = k 1 1 1
For λ = 1 \lambda=1 λ = 1 :
A x = 0 ⇒ [ 1 2 1 1 2 1 1 2 1 ] ( x 1 x 2 x 3 ) = ( 0 0 0 ) ⇒ [ 1 2 1 0 0 0 0 0 0 ] ( x 1 x 2 x 3 ) = ( 0 0 0 ) [ A : R 2 → R 2 − R 1 , R 3 → R 3 − R 1 ] \begin{align*}
&Ax=0\\
\Rightarrow\ &\left[
\begin{matrix}
1&2&1\\
1&2&1\\
1&2&1
\end{matrix}
\right]\left(
\begin{matrix}
x_1\\
x_2\\
x_3
\end{matrix}
\right)=\left(
\begin{matrix}
0\\
0\\
0
\end{matrix}
\right)\\
\Rightarrow\ &\left[
\begin{matrix}
1&2&1\\
0&0&0\\
0&0&0
\end{matrix}
\right]\left(
\begin{matrix}
x_1\\
x_2\\
x_3
\end{matrix}
\right)=\left(
\begin{matrix}
0\\
0\\
0
\end{matrix}
\right)&&[A:R_2\rightarrow R_2-R_1,R_3\rightarrow R_3-R_1]
\end{align*} ⇒ ⇒ A x = 0 1 1 1 2 2 2 1 1 1 x 1 x 2 x 3 = 0 0 0 1 0 0 2 0 0 1 0 0 x 1 x 2 x 3 = 0 0 0 [ A : R 2 → R 2 − R 1 , R 3 → R 3 − R 1 ]
Therefore, we get: x 1 + 2 x 2 + x 3 = 0 x_1+2x_2+x_3=0 x 1 + 2 x 2 + x 3 = 0 .
Considering through:
x 2 = 0 , x 3 = k x_2=0, x_3=k x 2 = 0 , x 3 = k , we get: x 1 = − k x_1=-k x 1 = − k . Therefore eigenvector:
∴ ( x 1 x 2 x 3 ) λ = 1 = k ( − 1 0 1 ) \therefore \left(
\begin{matrix}
x_1\\
x_2\\
x_3
\end{matrix}
\right)_{\lambda=1}=k\left(
\begin{matrix}
-1\\
0\\
1
\end{matrix}
\right) ∴ x 1 x 2 x 3 λ = 1 = k − 1 0 1
x 2 = k , x 3 = 0 x_2=k,x_3=0 x 2 = k , x 3 = 0 , we get: x 1 = − 2 k x_1=-2k x 1 = − 2 k . Therefore eigenvector:
∴ ( x 1 x 2 x 3 ) λ = 1 = k ( − 2 1 0 ) \therefore \left(
\begin{matrix}
x_1\\
x_2\\
x_3
\end{matrix}
\right)_{\lambda=1}=k\left(
\begin{matrix}
-2\\
1\\
0
\end{matrix}
\right) ∴ x 1 x 2 x 3 λ = 1 = k − 2 1 0
∴ ( x 1 x 2 x 3 ) λ = 1 = k ( − 1 0 1 ) , k ( − 2 1 0 ) \therefore \left(
\begin{matrix}
x_1\\
x_2\\
x_3
\end{matrix}
\right)_{\lambda=1}=k\left(
\begin{matrix}
-1\\
0\\
1
\end{matrix}
\right),k\left(
\begin{matrix}
-2\\
1\\
0
\end{matrix}
\right) ∴ x 1 x 2 x 3 λ = 1 = k − 1 0 1 , k − 2 1 0
(b) (ii) Determine all values of ( 1 + 3 i ) 3 4 (1+\sqrt{3}i)^{\frac34} ( 1 + 3 i ) 4 3 and show that their product is 8.
Given complex number is: ( 1 + 3 i ) 3 4 (1+\sqrt{3}i)^{\frac34} ( 1 + 3 i ) 4 3 . Converting it into trigonometric form:
⇒ ( 1 + 3 i ) 3 4 = 2 ( cos π 3 + i sin π 3 ) 3 4 = 8 ( cos π + i sin π ) 1 4 = 8 4 [ cos ( 2 k π + π 4 ) + i sin ( 2 k π + π 4 ) ] \begin{align*}
\Rightarrow(1+\sqrt{3}i)^{\frac34}&=2\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)^{\frac34}\\
&=8(\cos\pi+i\sin\pi)^{\frac14}\\
&=\sqrt[4]{8}\left[\cos\left(\frac{2k\pi+\pi}{4}\right)+i\sin\left(\frac{2k\pi+\pi}{4}\right)\right]\\
\end{align*} ⇒ ( 1 + 3 i ) 4 3 = 2 ( cos 3 π + i sin 3 π ) 4 3 = 8 ( cos π + i sin π ) 4 1 = 4 8 [ cos ( 4 2 kπ + π ) + i sin ( 4 2 kπ + π ) ]
The unique roots z i z_i z i are found for k = 0 , 1 , 2 , 3 k=0,1,2,3 k = 0 , 1 , 2 , 3 .
For k = 0 k=0 k = 0 :
z 1 = 8 4 [ cos π 4 + i sin π 4 ] = 8 4 ( 1 2 , 1 2 ) \begin{align*}
z_1=\sqrt[4]{8}\left[\cos\frac\pi4+i\sin\frac\pi4\right]=\sqrt[4]{8}\left(\frac{1}{\sqrt2},\frac{1}{\sqrt2}\right)
\end{align*} z 1 = 4 8 [ cos 4 π + i sin 4 π ] = 4 8 ( 2 1 , 2 1 )
For k = 1 k=1 k = 1 :
z 2 = 8 4 [ cos 3 π 4 + i sin 3 π 4 ] = 8 4 ( − 1 2 , 1 2 ) \begin{align*}
z_2=\sqrt[4]{8}\left[\cos\frac{3\pi}4+i\sin\frac{3\pi}4\right]=\sqrt[4]{8}\left(-\frac{1}{\sqrt2},\frac{1}{\sqrt2}\right)
\end{align*} z 2 = 4 8 [ cos 4 3 π + i sin 4 3 π ] = 4 8 ( − 2 1 , 2 1 )
For k = 2 k=2 k = 2 :
z 3 = 8 4 [ cos 5 π 4 + i sin 5 π 4 ] = 8 4 ( − 1 2 , − 1 2 ) \begin{align*}
z_3=\sqrt[4]{8}\left[\cos\frac{5\pi}4+i\sin\frac{5\pi}4\right]=\sqrt[4]{8}\left(-\frac{1}{\sqrt2},-\frac{1}{\sqrt2}\right)
\end{align*} z 3 = 4 8 [ cos 4 5 π + i sin 4 5 π ] = 4 8 ( − 2 1 , − 2 1 )
For k = 3 k=3 k = 3 :
z 1 = 8 4 [ cos 7 π 4 + i sin 7 π 4 ] = 8 4 ( 1 2 , − 1 2 ) \begin{align*}
z_1=\sqrt[4]{8}\left[\cos\frac{7\pi}4+i\sin\frac{7\pi}4\right]=\sqrt[4]{8}\left(\frac{1}{\sqrt2},-\frac{1}{\sqrt2}\right)
\end{align*} z 1 = 4 8 [ cos 4 7 π + i sin 4 7 π ] = 4 8 ( 2 1 , − 2 1 )
Multiplying the roots, we get:
z 1 z 2 z 3 z 4 = ( 8 4 ) 4 [ ( 1 2 , 1 2 ) ( − 1 2 , 1 2 ) ( − 1 2 , − 1 2 ) ( 1 2 , − 1 2 ) ] = 8 [ ( − 1 , 0 ) ( − 1 2 , − 1 2 ) ( 1 2 , − 1 2 ) ] = 8 [ ( − 1 , 0 ) ( − 1 , 0 ) ] = 8 \begin{align*}
z_1z_2z_3z_4&=(\sqrt[4]8)^4\left[\left(\frac{1}{\sqrt2},\frac{1}{\sqrt2}\right)\left(-\frac{1}{\sqrt2},\frac{1}{\sqrt2}\right)\left(-\frac{1}{\sqrt2},-\frac{1}{\sqrt2}\right)\left(\frac{1}{\sqrt2},-\frac{1}{\sqrt2}\right)\right]\\
&=8\left[(-1,0)\left(-\frac{1}{\sqrt2},-\frac{1}{\sqrt2}\right)\left(\frac{1}{\sqrt2},-\frac{1}{\sqrt2}\right)\right]\\
&=8[(-1,0)(-1,0)]\\
&=8
\end{align*} z 1 z 2 z 3 z 4 = ( 4 8 ) 4 [ ( 2 1 , 2 1 ) ( − 2 1 , 2 1 ) ( − 2 1 , − 2 1 ) ( 2 1 , − 2 1 ) ] = 8 [ ( − 1 , 0 ) ( − 2 1 , − 2 1 ) ( 2 1 , − 2 1 ) ] = 8 [( − 1 , 0 ) ( − 1 , 0 )] = 8
Hence proved, z 1 z 2 z 3 z 4 = 8 z_1z_2z_3z_4=8 z 1 z 2 z 3 z 4 = 8 .
(c) (i) Solve the system of linear equations given by:
2 x + 4 y + 6 z + 4 w = 4 2 x + 5 y + 7 z + 6 w = 3 2 x + 3 y + 5 z + 2 w = 5 2x+4y+6z+4w=4\\
2x+5y+7z+6w=3\\
2x+3y+5z+2w=5 2 x + 4 y + 6 z + 4 w = 4 2 x + 5 y + 7 z + 6 w = 3 2 x + 3 y + 5 z + 2 w = 5
Forming the augmented matrix:
[ A ∣ B ] = [ 2 4 6 4 : 4 2 5 7 6 : 3 2 3 5 2 : 5 ] = [ 1 2 3 2 : 2 2 5 7 6 : 3 2 3 5 2 : 5 ] [ R 1 → 1 2 R 1 ] = [ 1 2 3 2 : 2 0 1 1 2 : − 1 0 − 1 − 1 − 2 : − 1 ] [ R 2 → R 2 − 2 R 1 , R 3 → R 3 − 2 R 1 ] = [ 1 0 1 − 2 : 4 0 1 1 2 : − 1 0 0 0 0 : 0 ] [ R 3 → R 3 + R 2 , R 1 → R 1 − 2 R 2 ] \begin{align*}
[A|B]&=\left[
\begin{matrix}
2&4&6&4&:&4\\
2&5&7&6&:&3\\
2&3&5&2&:&5
\end{matrix}
\right]\\
&=\left[
\begin{matrix}
1&2&3&2&:&2\\
2&5&7&6&:&3\\
2&3&5&2&:&5
\end{matrix}
\right]&&[R_1\rightarrow\frac12 R_1]\\
&=\left[
\begin{matrix}
1&2&3&2&:&2\\
0&1&1&2&:&-1\\
0&-1&-1&-2&:&-1
\end{matrix}
\right]&&[R_2\rightarrow R_2-2R_1,R_3\rightarrow R_3-2R_1]\\
&=\left[
\begin{matrix}
1&0&1&-2&:&4\\
0&1&1&2&:&-1\\
0&0&0&0&:&0
\end{matrix}
\right]&&[R_3\rightarrow R_3+R_2,R_1\rightarrow R_1-2R_2]\\
\end{align*} [ A ∣ B ] = 2 2 2 4 5 3 6 7 5 4 6 2 : : : 4 3 5 = 1 2 2 2 5 3 3 7 5 2 6 2 : : : 2 3 5 = 1 0 0 2 1 − 1 3 1 − 1 2 2 − 2 : : : 2 − 1 − 1 = 1 0 0 0 1 0 1 1 0 − 2 2 0 : : : 4 − 1 0 [ R 1 → 2 1 R 1 ] [ R 2 → R 2 − 2 R 1 , R 3 → R 3 − 2 R 1 ] [ R 3 → R 3 + R 2 , R 1 → R 1 − 2 R 2 ]
The above is the row-reduced echelon form of the augmented matrix.
Since, p [ A ] = p [ A ∣ B ] < n p[A]=p[A|B]<n p [ A ] = p [ A ∣ B ] < n , where n = 3 n=3 n = 3 , therefore there exists an infinite number of solutions for the above set of equations.
Deriving equations from it:
x + z − 2 w = 4 ( 1 ) y + z + 2 w = − 1 ( 2 ) \begin{align*}
&x+z-2w=4&&&&&&&&&&(1)\\
&y+z+2w=-1&&&&&&&&&&(2)
\end{align*} x + z − 2 w = 4 y + z + 2 w = − 1 ( 1 ) ( 2 )
Taking, z = t 1 , w = t 2 z=t_1,w=t_2 z = t 1 , w = t 2 , where: { t 1 , t 2 } ∈ R ∈ [ − ∞ , + ∞ ] \{t_1,t_2\}\in\R\in[-\infty,+\infty] { t 1 , t 2 } ∈ R ∈ [ − ∞ , + ∞ ] .
Substituting the values of z , w z,w z , w in ( 1 ) (1) ( 1 ) , we get:
x = 4 − t 1 + 2 t 2 x=4-t_1+2t_2 x = 4 − t 1 + 2 t 2
Substituting the values of z , w z,w z , w in ( 2 ) (2) ( 2 ) , we get:
y = 4 − t 1 − 2 t 2 y=4-t_1-2t_2 y = 4 − t 1 − 2 t 2
Since all the values x , y , z , w x,y,z,w x , y , z , w dependes on t 1 , t 2 t_1,t_2 t 1 , t 2 .
Thereofore: { x , y , z , w } ∈ R ∈ [ − ∞ , + ∞ ] \{x,y,z,w\}\in\R\in[-\infty,+\infty] { x , y , z , w } ∈ R ∈ [ − ∞ , + ∞ ] , i.e., an infinite number of solutions.
(c) (ii) If A A A and B B B be invertible matrices of the same order then show that A B AB A B is invertible and ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} ( A B ) − 1 = B − 1 A − 1 . Hence show that ( A 20 ) − 1 = ( A − 1 ) 20 (A^{20})^{-1}=(A^{-1})^{20} ( A 20 ) − 1 = ( A − 1 ) 20 .
Considering two n × n n\times n n × n matrices A A A and B B B .
Since A A A is invertible, it is non-singular, A − 1 A^{-1} A − 1 exists, and det A ≠ 0 \det A\ne0 det A = 0 . Furthermore by the definition of an inverse, A − 1 A = A A − 1 = I n A^{-1}A=AA^{-1}=I_n A − 1 A = A A − 1 = I n .
Similarly since B B B is invertible, it is non-singular, B − 1 B^{-1} B − 1 exists, and det B ≠ 0 \det B\ne0 det B = 0 . Furthermore, by the definition of an inverse, B − 1 B = B B − 1 = I n B^{-1}B=BB^{-1}=I_n B − 1 B = B B − 1 = I n .
det A B = det A ⋅ det B ≠ 0 \det AB=\det A\cdot\det B\ne0 det A B = det A ⋅ det B = 0
Therefore, A B AB A B is a non-singular matrix, and its inverse exists.
Now:
( A B ) ( B − 1 A − 1 ) = A ( B B − 1 ) A − 1 = ( A I n ) A − 1 = A A − 1 = I n \begin{align*}
(AB)(B^{-1}A^{-1})&=A(BB^{-1})A^{-1}\\
&=(AI_n)A^{-1}\\
&=AA^{-1}\\
&=I_n
\end{align*} ( A B ) ( B − 1 A − 1 ) = A ( B B − 1 ) A − 1 = ( A I n ) A − 1 = A A − 1 = I n
Similarly:
( B − 1 A − 1 ) ( A B ) = B − 1 ( A − 1 A ) B = ( B − 1 I n ) B = B − 1 B = I n \begin{align*}
(B^{-1}A^{-1})(AB)&=B^{-1}(A^{-1}A)B\\
&=(B^{-1}I_n)B\\
&=B^{-1}B\\
&=I_n
\end{align*} ( B − 1 A − 1 ) ( A B ) = B − 1 ( A − 1 A ) B = ( B − 1 I n ) B = B − 1 B = I n
Therefore, we can say:
( B − 1 A − 1 ) ( A B ) = I n ⇒ ( B − 1 A − 1 ) = ( A B ) − 1 \begin{align*}
(B^{-1}A^{-1})(AB)&=I_n\\
\Rightarrow (B^{-1}A^{-1})&=(AB)^{-1}
\end{align*} ( B − 1 A − 1 ) ( A B ) ⇒ ( B − 1 A − 1 ) = I n = ( A B ) − 1
Hence proved: ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} ( A B ) − 1 = B − 1 A − 1
Now:
A 20 ( A − 1 ) 20 = ( A A − 1 ) 2 0 = I n 20 = I n ⇒ ( A − 1 ) 20 = ( A 20 ) − 1 \begin{align*}
A^{20}(A^{-1})^{20}&=(AA^{-1})^20\\
&=I_n^{20}\\
&=I_n\\
\Rightarrow(A^{-1})^{20}&=(A^{20})^{-1}
\end{align*} A 20 ( A − 1 ) 20 ⇒ ( A − 1 ) 20 = ( A A − 1 ) 2 0 = I n 20 = I n = ( A 20 ) − 1
Hence proved: ( A − 1 ) 20 = ( A 20 ) − 1 (A^{-1})^{20}=(A^{20})^{-1} ( A − 1 ) 20 = ( A 20 ) − 1
(d) (i) If α , β , γ \alpha,\beta,\gamma α , β , γ be the roots of the equation x 3 + q x + 1 = 0 x^3+qx+1=0 x 3 + q x + 1 = 0 , find the equation whose roots are
α β + β α , β γ + γ β , γ α + α γ \frac\alpha\beta+\frac\beta\alpha,\frac\beta\gamma+\frac\gamma\beta,\frac\gamma\alpha+\frac\alpha\gamma β α + α β , γ β + β γ , α γ + γ α
Given equation:
f ( x ) = x 3 + q x + 1 = 0 f(x)=x^3+qx+1=0 f ( x ) = x 3 + q x + 1 = 0
Let y y y be one of the new roots:
y = α β + β α = α 2 + β 2 α β . γ γ = ( ∑ α 2 − γ 2 ) γ − 1 = ( ( ∑ α ) 2 − 2 ∑ α β − γ 2 ) γ − 1 = ( − 2 q − γ 2 ) γ − 1 = 2 q γ + γ 3 ⇒ 2 q γ + γ 3 − y = 0 = y γ \begin{align*}
y&=\frac\alpha\beta+\frac\beta\alpha\\
&=\frac{\alpha^2+\beta^2}{\alpha\beta}.\frac\gamma\gamma\\
&=\frac{\left(\sum\alpha^2-\gamma^2\right)\gamma}{-1}\\
&=\frac{\left((\sum\alpha)^2-2\sum\alpha\beta-\gamma^2\right)\gamma}{-1}\\
&=\frac{(-2q-\gamma^2)\gamma}{-1}\\
&=2q\gamma+\gamma^3\\
&\Rightarrow2q\gamma+\gamma^3-y=0=y_\gamma
\end{align*} y = β α + α β = α β α 2 + β 2 . γ γ = − 1 ( ∑ α 2 − γ 2 ) γ = − 1 ( ( ∑ α ) 2 − 2 ∑ α β − γ 2 ) γ = − 1 ( − 2 q − γ 2 ) γ = 2 q γ + γ 3 ⇒ 2 q γ + γ 3 − y = 0 = y γ
Performing:
y γ − f ( γ ) = 2 q γ + γ 3 − y − γ 3 − q γ − 1 = 0 ⇒ q γ − y − 1 = 0 ⇒ γ = y + 1 q \begin{align*}
y_\gamma-f(\gamma)&=2q\gamma+\gamma^3-y-\gamma^3-q\gamma-1=0\\
&\Rightarrow q\gamma-y-1=0\\
&\Rightarrow \gamma=\frac{y+1}{q}
\end{align*} y γ − f ( γ ) = 2 q γ + γ 3 − y − γ 3 − q γ − 1 = 0 ⇒ q γ − y − 1 = 0 ⇒ γ = q y + 1
Now, γ \gamma γ is a root of the above equation:
∴ f ( γ ) = γ 3 + q γ + 1 = 0 ⇒ ( y + 1 q ) 3 + q ( y + 1 q ) + 1 = 0 ⇒ ( y + 1 ) 3 + q 3 ( y + 1 ) + q 3 = 0 ⇒ y 3 + 3 y 2 + ( q 3 + 3 ) y + ( 2 q 3 + 1 ) = 0 \begin{align*}
\therefore f(\gamma)&=\gamma^3+q\gamma+1=0\\
&\Rightarrow\left(\frac{y+1}{q}\right)^3+q\left(\frac{y+1}{q}\right)+1=0\\
&\Rightarrow(y+1)^3+q^3(y+1)+q^3=0\\
&\Rightarrow y^3+3y^2+(q^3+3)y+(2q^3+1)=0
\end{align*} ∴ f ( γ ) = γ 3 + q γ + 1 = 0 ⇒ ( q y + 1 ) 3 + q ( q y + 1 ) + 1 = 0 ⇒ ( y + 1 ) 3 + q 3 ( y + 1 ) + q 3 = 0 ⇒ y 3 + 3 y 2 + ( q 3 + 3 ) y + ( 2 q 3 + 1 ) = 0
Therefore the transformed equation for the new roots is:
f ( x ) = x 3 + 3 x 2 + ( q 3 + 3 ) x + ( 2 q 3 + 1 ) = 0 f(x)=x^3+3x^2+(q^3+3)x+(2q^3+1)=0 f ( x ) = x 3 + 3 x 2 + ( q 3 + 3 ) x + ( 2 q 3 + 1 ) = 0
(d) (ii) If α , β , γ \alpha,\beta,\gamma α , β , γ be the roots of the equation x 3 + q x + 1 = 0 x^3+qx+1=0 x 3 + q x + 1 = 0 , then prove that
(I) ∑ α 3 = − 3 \sum\alpha^3=-3 ∑ α 3 = − 3
(II) ∑ α 5 = 5 q \sum\alpha^5=5q ∑ α 5 = 5 q
Given equation:
f ( x ) = x 3 + q x + 1 = 0 f(x)=x^3+qx+1=0 f ( x ) = x 3 + q x + 1 = 0
From here we can find out that:
∑ α = − b / a = 0 \sum\alpha=-b/a=0 ∑ α = − b / a = 0
∑ α β = c / a = q \sum\alpha\beta=c/a=q ∑ α β = c / a = q
α β γ = − d / a = − 1 \alpha\beta\gamma=-d/a=-1 α β γ = − d / a = − 1
∑ α 2 = ( ∑ α ) 2 − 2 ∑ α β = − 2 q \sum\alpha^2=(\sum\alpha)^2-2\sum\alpha\beta=-2q ∑ α 2 = ( ∑ α ) 2 − 2 ∑ α β = − 2 q
(I) To prove: ∑ α 3 = − 3 \sum\alpha^3=-3 ∑ α 3 = − 3
We know: f ( α ) = f ( β ) = f ( γ ) = 0 f(\alpha)=f(\beta)=f(\gamma)=0 f ( α ) = f ( β ) = f ( γ ) = 0 , since α , β , γ \alpha,\beta,\gamma α , β , γ are the roots of f ( x ) f(x) f ( x ) .
∴ f ( α ) + f ( β ) + f ( γ ) = ( α 3 + β 3 + γ 3 ) + q ( α + β + γ ) + 3 = 0 ⇒ ∑ α 3 + q ∑ α + 3 = 0 ⇒ ∑ α 3 = − 3 [ ∵ ∑ α = 0 ] \begin{align*}
\therefore f(\alpha)+f(\beta)+f(\gamma)&=(\alpha^3+\beta^3+\gamma^3)+q(\alpha+\beta+\gamma)+3=0\\
&\Rightarrow\sum\alpha^3+q\sum\alpha+3=0\\
&\Rightarrow\sum\alpha^3=-3&&[\because \sum\alpha=0]
\end{align*} ∴ f ( α ) + f ( β ) + f ( γ ) = ( α 3 + β 3 + γ 3 ) + q ( α + β + γ ) + 3 = 0 ⇒ ∑ α 3 + q ∑ α + 3 = 0 ⇒ ∑ α 3 = − 3 [ ∵ ∑ α = 0 ]
Hence proved: ∑ α 3 = − 3 \sum\alpha^3=-3 ∑ α 3 = − 3
(II) To prove: ∑ α 5 = 5 q \sum\alpha^5=5q ∑ α 5 = 5 q
Performing the following:
α 2 f ( α ) = α 5 + q α 3 + α 2 = 0 β 2 f ( β ) = β 5 + q β 3 + β 2 = 0 γ 2 f ( γ ) = γ 5 + q γ 3 + γ 2 = 0 \alpha^2f(\alpha)=\alpha^5+q\alpha^3+\alpha^2=0\\
\beta^2f(\beta)=\beta^5+q\beta^3+\beta^2=0\\
\gamma^2f(\gamma)=\gamma^5+q\gamma^3+\gamma^2=0 α 2 f ( α ) = α 5 + q α 3 + α 2 = 0 β 2 f ( β ) = β 5 + q β 3 + β 2 = 0 γ 2 f ( γ ) = γ 5 + q γ 3 + γ 2 = 0
∴ α 2 f ( α ) + β 2 f ( β ) + γ 2 f ( γ ) = 0 ⇒ ( α 5 + β 5 + γ 5 ) + q ( α 3 + β 3 + γ 3 ) + ( α 2 + β 2 + γ 2 ) = 0 ⇒ ∑ α 5 + q ∑ α 3 + ∑ α 2 = 0 ⇒ ∑ α 5 − 3 q − 2 q = 0 [ ∵ ∑ α 3 = − 3 , ∑ α 2 = − 2 q ] ⇒ ∑ α 5 = 5 q \begin{align*}
\therefore\ &\alpha^2f(\alpha)+\beta^2f(\beta)+\gamma^2f(\gamma)=0\\
\Rightarrow\ &(\alpha^5+\beta^5+\gamma^5)+q(\alpha^3+\beta^3+\gamma^3)+(\alpha^2+\beta^2+\gamma^2)=0\\
\Rightarrow\ &\sum\alpha^5+q\sum\alpha^3+\sum\alpha^2=0\\
\Rightarrow\ &\sum\alpha^5-3q-2q=0&&[\because\sum\alpha^3=-3,\sum\alpha^2=-2q]\\
\Rightarrow\ &\sum\alpha^5=5q
\end{align*} ∴ ⇒ ⇒ ⇒ ⇒ α 2 f ( α ) + β 2 f ( β ) + γ 2 f ( γ ) = 0 ( α 5 + β 5 + γ 5 ) + q ( α 3 + β 3 + γ 3 ) + ( α 2 + β 2 + γ 2 ) = 0 ∑ α 5 + q ∑ α 3 + ∑ α 2 = 0 ∑ α 5 − 3 q − 2 q = 0 ∑ α 5 = 5 q [ ∵ ∑ α 3 = − 3 , ∑ α 2 = − 2 q ]
Hence proved: ∑ α 5 = 5 q \sum\alpha^5=5q ∑ α 5 = 5 q