Metadata
CodeUMATMIN10001
SubjectMathematics
TitleLinear and Classical Algebra
Semester1st
Year2023
Time2 hours 30 minutes
F.M.60
Solution
Start of document
Start of document
Start of document
Start of document
Start of document
Start of document
Start of document
Start of document

Group A

3×4=123\times4=12

1. Answer any four questions

(a) If aa be a non-zero complex number and zz be any complex number, then define aza^z. What is the principle value of aza^z?

(b) Apply Descarte's rule of sign to find the nature of the roots of the equation:

x4+2x2+3x1=0x^4+2x^2+3x-1=0

Given equation:

f(x)=x4+2x2+3x1=0f(x)=x^4+2x^2+3x-1=0

The above equation is a polynomial of degree 44. Therefore, there are 44 roots to the above polynomial.

In order to find the number of positive roots, we have to count the number of sign changes in f(x)f(x).

f(x)=x4+2x2+3x1f(x)=x^4+2x^2+3x-1\\

The only sign change is between, 3x3x and 1-1. Therefore, the number of positive roots is 11.

In order to find the number of negative roots, we have to count the number of sign changes in f(x)f(-x).

f(x)=x4+2x23x1f(-x)=x^4+2x^2-3x-1

The only sign change is between 2x22x^2 and 3x-3x. Therefore, the number of negative roots is 11.

The remaining roots are imaginary roots. Therefore, imaginary roots is 411=24-1-1=2.

(c) Prove that zero is an eigenvalue of a square matrix.

As per Cayley-Hamilton theorem, any square matrix satisfies its characteristic equation ψA(x)\psi_A(x) as follows:

ψA(x)=c0xn+c1xn1++cn1x+cn=0(1)\begin{align*} \psi_A(x)=c_0x^n+c_1x^{n-1}+\ldots+c_{n-1}x+c_n=0&&&&&&&&&&(1) \end{align*}

But for a square matrix AA, its determinant is: detA=0\det A=0. And in the characteristic equation (1)(1):

cn=detA=0c_n=\det A=0

Therefore, rewriting the characteristic equation, we get:

ψA(x)=c0xn+c1xn1++cn1x=0\psi_A(x)=c_0x^n+c_1x^{n-1}+\ldots+c_{n-1}x=0

In the above equation, 00 satisfies ψA(x)\psi_A(x), therby making it an eigenvalue.

Hence proved: Zero is an eigenvalue of a square matrix.

(d) Define consistent system of equations. Show that the following system of linear equations has infinite number of solutions:

x1+2x2=6743x1+6x2=2022x_1+2x_2=674\\ 3x_1+6x_2=2022

Consistent system of equations: A system of equations for which a solution exists is said to be consistent system of equations. The solution could either be unique, or there might exist an infinite number of solutions, based on the following conditions:

  1. p(A)=p(AB)=np(A)=p(A|B)=n
  2. p(A)=p(AB)<np(A)=p(A|B)<n

Where,

  • p(A)p(A) is the rank of coefficient matrix,
  • p(AB)p(A|B) is the rank of augmented matrix, and
  • nn is the number of unknowns in the system of equations.

Given equations:

x1+2x2=6743x1+6x2=2022x_1+2x_2=674\\ 3x_1+6x_2=2022

Creating the augmented matrix:

[AB]=[12:67436:2022]=[12:67400:0][By R2R23R1]\begin{align*} [A|B]&=\left[\begin{matrix} 1&2&:&674\\ 3&6&:&2022 \end{matrix}\right]\\ &=\left[\begin{matrix} 1&2&:&674\\ 0&0&:&0 \end{matrix}\right] &&[\text{By}\ R_2\rightarrow R_2-3R_1] \end{align*}

The above is the row reduced echelon matrix. Therefore, we can get the following:

  • p(A)=1p(A)=1
  • p(AB)=1p(A|B)=1
  • n=2n=2

Since p(A)=p(AB)<np(A)=p(A|B)<n, therefore there exists an infinite number of solutions for the given set of equations.

(e) Define rank of a matrix. Find the rank of the following matrix:

(1000110000100001)\left(\begin{matrix} 1&0&0&0\\ 1&1&0&0\\ 0&0&1&0\\ 0&0&0&1 \end{matrix}\right)

Rank of matrix: Rank of a matrix AA, is defined to be the greatest positive integer rr, such that AA has atleast one non-zero minor order of rr. The rank of AA is also called the determinant rank of AA.

Given matrix:

=[1000110000100001]=[1000010000100001][By R2R2R1]\begin{align*} &=\left[\begin{matrix} 1&0&0&0\\ 1&1&0&0\\ 0&0&1&0\\ 0&0&0&1 \end{matrix}\right]\\ &=\left[\begin{matrix} 1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&1 \end{matrix}\right]&&[\text{By}\ R_2\rightarrow R_2-R_1] \end{align*}

The above is the row-reduced echelon form. Therefore the rank of the matrix can be found by counting the number of non-zero rows in the row-reduced echelon form. Rank of the matrix is 44.

(f) If a,b,c,da, b, c, d be positive real numbers, then find the minimum value of the following. When does the minimum value occur?

ab+bc+cd+da\frac ab+\frac bc+\frac cd+\frac da

Group B

6×4=246\times4=24

2. Answer any four questions

(a) If tan(ilogxiyx+iy)=2\tan\left(i\log\frac{x-iy}{x+iy}\right)=2, then prove that x2y2=xyx^2-y^2=xy.

(b) If x,y,zx,y,z are positive real numbers and x+y+z=1x+y+z=1, prove that:

8xyz(1x)(1y)(1z)8278xyz\le(1-x)(1-y)(1-z)\le\frac8{27}

(c) Obtain a row echelon matrix which is row equivalent to the following matrix and hence find its rank.

(002201324126262391106)\left(\begin{matrix} 0&0&2&2&0\\ 1&3&2&4&1\\ 2&6&2&6&2\\ 3&9&1&10&6 \end{matrix}\right)

The matrix is:

=(002201324126262391106)=(132410022026262391106)[R2R1]=(13241002200022000523)[R3R32R1,R4R43R1]=(13241005230022000220)[R2R4]=(13021003030022000000)[R4R4+R3,R2R2R3,R1R1+R3]=(13021001010011000000)[R312R3,R213R2]=(13021001010001100000)[R3R3R2]=(13001001010001100000)[R1R12R3]\begin{align*} &=\left(\begin{matrix} 0&0&2&2&0\\ 1&3&2&4&1\\ 2&6&2&6&2\\ 3&9&1&10&6 \end{matrix}\right)\\ &=\left(\begin{matrix} 1&3&2&4&1\\ 0&0&2&2&0\\ 2&6&2&6&2\\ 3&9&1&10&6 \end{matrix}\right)&&[R_2\leftrightarrow R_1]\\ &=\left(\begin{matrix} 1&3&2&4&1\\ 0&0&2&2&0\\ 0&0&-2&-2&0\\ 0&0&-5&-2&3 \end{matrix}\right)&&[R_3\rightarrow R_3-2R_1,R_4\rightarrow R_4-3R_1]\\ &=\left(\begin{matrix} 1&3&2&4&1\\ 0&0&-5&-2&3\\ 0&0&-2&-2&0\\ 0&0&2&2&0 \end{matrix}\right)&&[R_2\leftrightarrow R_4]\\ &=\left(\begin{matrix} 1&3&0&2&1\\ 0&0&-3&0&3\\ 0&0&-2&-2&0\\ 0&0&0&0&0 \end{matrix}\right)&&[R_4\rightarrow R_4+R_3, R_2\rightarrow R_2-R_3,R_1\rightarrow R_1+R_3]\\ &=\left(\begin{matrix} 1&3&0&2&1\\ 0&0&1&0&-1\\ 0&0&1&1&0\\ 0&0&0&0&0 \end{matrix}\right)&&[R_3\rightarrow -\frac12 R_3, R_2\rightarrow -\frac13 R_2]\\ &=\left(\begin{matrix} 1&3&0&2&1\\ 0&0&1&0&-1\\ 0&0&0&1&1\\ 0&0&0&0&0 \end{matrix}\right)&&[R_3\rightarrow R_3-R_2]\\ &=\left(\begin{matrix} 1&3&0&0&-1\\ 0&0&1&0&-1\\ 0&0&0&1&1\\ 0&0&0&0&0 \end{matrix}\right)&&[R_1\rightarrow R_1-2R_3]\\ \end{align*}

The above is the row reduced echelon form of the matrix. The rank can be found out by counting the number of non-zero rows, which is 33.

(d) State Cayley-Hamilton theorem. Use it to find the inverse of the following matrix:

(110121322)\left( \begin{matrix} 1&-1&0\\ 1&2&-1\\ 3&2&-2 \end{matrix} \right)

Cayley-Hamilton theorem states that, any square matrix AA without exception satisfies its characteristic equation, ψA(x)\psi_A(x), where xnx_n can be replaced with AA:

ψA(x)=c0xn+c1xn1++cn1x+cn=0\psi_A(x)=c_0x^n+c_1x^{n-1}+\ldots+c_{n-1}x+c_n=0

Finding the characteristic equation of the above matrix:

AλIn=0 [110121322]λ[100010001]=0 1λ1012λ1322λ=0 (1λ)[(2λ)(2λ)+2]+(2λ+3)=0 (1λ)(λ22)+(1λ)=0 (1λ)(λ21)=0 λ2λ31+λ=0 λ3λ2λ+1=0\begin{align*} &|A-\lambda I_n|=0\\ \Rightarrow\ &\left|\left[ \begin{matrix} 1&-1&0\\ 1&2&-1\\ 3&2&-2 \end{matrix} \right]-\lambda\left[ \begin{matrix} 1&0&0\\ 0&1&0\\ 0&0&1 \end{matrix} \right]\right|=0\\ \Rightarrow\ &\left| \begin{matrix} 1-\lambda&-1&0\\ 1&2-\lambda&-1\\ 3&2&-2-\lambda \end{matrix} \right|=0\\ \Rightarrow\ &(1-\lambda)[(2-\lambda)(-2-\lambda)+2]+(-2-\lambda+3)=0\\ \Rightarrow\ &(1-\lambda)(\lambda^2-2)+(1-\lambda)=0\\ \Rightarrow\ &(1-\lambda)(\lambda^2-1)=0\\ \Rightarrow\ &\lambda^2-\lambda^3-1+\lambda=0\\ \Rightarrow\ &\lambda^3-\lambda^2-\lambda+1=0 \end{align*}

As per Cayley-Hamilton theorem: λ=A\lambda=A. Therefore,

A3A2A+In=0 A1(A3A2A+In)=0 A2AIn+A1=0 A1=A+InA2 A1=[110121322]+[100010001][031010132] A1=[221121453]\begin{align*} &A^3-A^2-A+I_n=0\\ \Rightarrow\ &A^{-1}(A^3-A^2-A+I_n)=0\\ \Rightarrow\ &A^2-A-I_n+A^{-1}=0\\ \Rightarrow\ &A^{-1}=A+I_n-A^2\\ \Rightarrow\ &A^{-1}=\left[ \begin{matrix} 1&-1&0\\ 1&2&-1\\ 3&2&-2 \end{matrix} \right]+\left[ \begin{matrix} 1&0&0\\ 0&1&0\\ 0&0&1 \end{matrix} \right]-\left[ \begin{matrix} 0&-3&1\\ 0&1&0\\ -1&-3&2 \end{matrix} \right]\\ \Rightarrow\ &A^{-1}=\left[ \begin{matrix} 2&2&-1\\ 1&2&-1\\ 4&5&-3 \end{matrix} \right] \end{align*}

Therefore, inverse of matrix A is:

A1=[221121453]A^{-1}=\left[ \begin{matrix} 2&2&-1\\ 1&2&-1\\ 4&5&-3 \end{matrix} \right]

(e) Let α,β,γ\alpha,\beta,\gamma be the roots of the equation 2x3+3x2x1=02x^3+3x^2-x-1=0, find the equation whose roots are

β+γα,γ+αβ,α+βγ\frac{\beta+\gamma}{\alpha},\frac{\gamma+\alpha}{\beta},\frac{\alpha+\beta}{\gamma}

Given equation:

f(x)=2x3+3x2x1=0f(x)=2x^3+3x^2-x-1=0

Let y=β+γαy=\frac{\beta+\gamma}{\alpha}

y=β+γααy=β+γαy=αααy=32αα(y+1)=32α=32(y+1)\begin{align*} y&=\frac{\beta+\gamma}{\alpha}\\ \Rightarrow \alpha y&=\beta+\gamma\\ \Rightarrow \alpha y&=\sum\alpha-\alpha\\ \Rightarrow \alpha y&=-\frac32-\alpha\\ \Rightarrow \alpha(y+1)&=-\frac32\\ \therefore \alpha&=\frac{-3}{2(y+1)} \end{align*}

Now α\alpha is a root of the equation f(x)f(x). Therefore:

f(α)=2α3+3α2α1=02(32(y+1))3+3(32(y+1))2(32(y+1))1=0274(y+1)3+274(y+1)2+32(y+1)1=027+27(y+1)+6(y+1)24(y+1)3=04y36y2+27y+2=04y3+6y227y2=0\begin{align*} f(\alpha)&=2\alpha^3+3\alpha^2-\alpha-1=0\\ &\Rightarrow 2\left(\frac{-3}{2(y+1)}\right)^3+3\left(\frac{-3}{2(y+1)}\right)^2-\left(\frac{-3}{2(y+1)}\right)-1=0\\ &\Rightarrow\frac{-27}{4(y+1)^3}+\frac{27}{4(y+1)^2}+\frac{3}{2(y+1)}-1=0\\ &\Rightarrow-27+27(y+1)+6(y+1)^2-4(y+1)^3=0\\ &\Rightarrow-4y^3-6y^2+27y+2=0\\ &\Rightarrow4y^3+6y^2-27y-2=0 \end{align*}

Therefore the transformed equation f(x)f(x)' is:

f(x)=4x3+6x227x2=0f(x)'=4x^3+6x^2-27x-2=0

(f) Solve by Cardan's method x33x1=0x^3-3x-1=0. Hence find cosπ9cos7π9cos13π9\cos{\frac\pi9}\cos{\frac{7\pi}9}\cos{\frac{13\pi}9}.

Given equation:

f(x)=x33x1=0f(x)=x^3-3x-1=0

Let z=u1/3+v1/3z=u^{1/3}+v^{1/3}.

z=u1/3+v1/3 z3=u+v+3u1/3v1/3(u1/3+v1/3) z33u1/3v1/3z(u+v)=0[u1/3+v1/3=z]\begin{align*} &z=u^{1/3}+v^{1/3}\\ \Rightarrow\ &z^3=u+v+3u^{1/3}v^{1/3}(u^{1/3}+v^{1/3})\\ \Rightarrow\ &z^3-3u^{1/3}v^{1/3}z-(u+v)=0&&[\because u^{1/3}+v^{1/3}=z] \end{align*}

Comparing the above equation with f(x)f(x), we get:

  • u1/3v1/3=1uv=1u^{1/3}v^{1/3}=1\Rightarrow uv=1, and
  • u+v=1u+v=1

Creating a quadratic equation with the above roots:

g(x)=x2(u+v)x+uv=0x2x+1=0x=1±32x=12+i32,12i32x=cosπ3+isinπ3,cosπ3isinπ3\begin{align*} g(x)&=x^2-(u+v)x+uv=0\\ &\Rightarrow x^2-x+1=0\\ &\Rightarrow x=\frac{1\pm\sqrt{-3}}{2}\\ &\Rightarrow x=\frac12+i\frac{\sqrt3}2,\frac12-i\frac{\sqrt3}2\\ &\Rightarrow x=\cos{\frac\pi3}+i\sin{\frac\pi3}, \cos{\frac\pi3}-i\sin{\frac\pi3} \end{align*}

Considering:

u=cosπ3+isinπ3u1/3=cos(2kπ+π/33)+isin(2kπ+π/33)=cos(6kπ+π9)+isin(6kπ+π9)\begin{align*} u&=\cos{\frac\pi3}+i\sin{\frac\pi3}\\ \Rightarrow u^{1/3}&=\cos\left(\frac{2k\pi+\pi/3}{3}\right)+i\sin\left(\frac{2k\pi+\pi/3}{3}\right)\\ &=\cos\left(\frac{6k\pi+\pi}{9}\right)+i\sin\left(\frac{6k\pi+\pi}{9}\right) \end{align*}

and,

v=cosπ3isinπ3v1/3=cos(2kπ+π/33)isin(2kπ+π/33)=cos(6kπ+π9)isin(6kπ+π9)\begin{align*} v&=\cos{\frac\pi3}-i\sin{\frac\pi3}\\ \Rightarrow v^{1/3}&=\cos\left(\frac{2k\pi+\pi/3}{3}\right)-i\sin\left(\frac{2k\pi+\pi/3}{3}\right)\\ &=\cos\left(\frac{6k\pi+\pi}{9}\right)-i\sin\left(\frac{6k\pi+\pi}{9}\right) \end{align*}

Now using these to find the roots of the cubic equation are unique for k=0,1,2k=0,1,2:

For k=0k=0:

x1=u1/3+v1/3=2cosπ9\begin{align*} x_1&=u^{1/3}+v^{1/3}\\ &=2\cos\frac{\pi}{9} \end{align*}

For k=1k=1:

x2=u1/3+v1/3=2cos7π9\begin{align*} x_2&=u^{1/3}+v^{1/3}\\ &=2\cos\frac{7\pi}{9} \end{align*}

For k=2k=2:

x3=u1/3+v1/3=2cos13π9\begin{align*} x_3&=u^{1/3}+v^{1/3}\\ &=2\cos\frac{13\pi}{9} \end{align*}

Therefore, for f(x)=x33x1=0f(x)=x^3-3x-1=0, the roots are:

x=2cosπ9,2cos7π9,2cos13π9x=2\cos\frac{\pi}{9},2\cos\frac{7\pi}{9},2\cos\frac{13\pi}{9}

We know for the above cubic equation:

x1x2x3=1 23(cosπ9cos7π9cos13π9)1 cosπ9cos7π9cos13π9=18\begin{align*} &x_1x_2x_3=-1\\ \Rightarrow\ &2^3\left(\cos\frac{\pi}{9}\cos\frac{7\pi}{9}\cos\frac{13\pi}{9}\right)1\\ \therefore\ &\cos\frac{\pi}{9}\cos\frac{7\pi}{9}\cos\frac{13\pi}{9}=\frac{1}{8} \end{align*}

Group C

6×2=126\times2=12

3. Answer any two questions

(a) (i) State De-Moivre's theorem for integer and rational indices. Use it to prove that

cos5ϕ=16cos5ϕ20cos3ϕ+5cosϕ\cos 5\phi=16\cos^5\phi-20\cos^3\phi+5\cos\phi

De-Moivre's theorem: When nn is a fraction, positive or negative, and ϕ\phi is a real number, then cosnϕ+isinnϕ\cos n\phi+i\sin n\phi is one of the values of (cosnϕ+isinnϕ)n(\cos n\phi+i\sin n\phi)^n. As:

(cosϕ+isinϕ)n=cosnϕ+isinnϕ(\cos\phi+i\sin\phi)^n=\cos n\phi+i\sin n\phi

Considering (cosϕ+isinϕ)5(\cos\phi+i\sin\phi)^5:

(cosϕ+isinϕ)5=cos5ϕ+ 5C1cos4ϕisinϕ+ 5C2cos3ϕi2sin2ϕ+ 5C3cos2ϕi3sin3ϕ+ 5C4cosϕi4sin4ϕ+i5sin5ϕ=cos5ϕ+5cos4ϕisinϕ10cos3ϕsin2ϕ10cos2ϕisin3θ+5cosϕsin4ϕ+isin5ϕ=(cos5ϕ10cos3sin2ϕ+5cosϕsin4ϕ)+i(5cos4ϕsinϕ10cos2ϕsin3ϕ+sin5ϕ)\begin{align*} (\cos\phi+i\sin\phi)^5&=\cos^5\phi+\ ^5C_1\cos^4\phi\cdot i\sin\phi+\ ^5C_2\cos^3\phi\cdot i^2\sin^2\phi+\ ^5C_3\cos^2\phi\cdot i^3\sin^3\phi+\ ^5C_4\cos\phi\cdot i^4\sin^4\phi+i^5\sin^5\phi\\ &=\cos^5\phi+5\cos^4\phi\cdot i\sin\phi-10\cos^3\phi\sin^2\phi-10\cos^2\phi\cdot i\sin^3\theta+5\cos\phi\sin^4\phi+i\sin^5\phi\\ &=(\cos^5\phi-10\cos^3\sin^2\phi+5\cos\phi\sin^4\phi)+i(5\cos^4\phi\sin\phi-10\cos^2\phi\sin^3\phi+\sin^5\phi) \end{align*}

But we know: (cosϕ+isinϕ)5=cos5ϕ+isin5ϕ(\cos\phi+i\sin\phi)^5=\cos5\phi+i\sin5\phi. Comparing this with the equation above, we get:

cos5ϕ=cos5ϕ10cos3sin2ϕ+5cosϕsin4ϕ=cos5ϕ10cos3ϕ(1cos2ϕ)+5cosϕ(1cos2ϕ)2=cos5ϕ10cos3ϕ+10cos5ϕ+5cosϕ(1+cos4ϕ2cos2ϕ)=11cos5ϕ10cos3ϕ+5cosϕ+5cos5ϕ10cos3ϕ=16cos5ϕ20cos3ϕ+5cosϕ\begin{align*} \cos5\phi&=\cos^5\phi-10\cos^3\sin^2\phi+5\cos\phi\sin^4\phi\\ &=\cos^5\phi-10\cos^3\phi(1-\cos^2\phi)+5\cos\phi(1-\cos^2\phi)^2\\ &=\cos^5\phi-10\cos^3\phi+10\cos^5\phi+5\cos\phi(1+\cos^4\phi-2\cos^2\phi)\\ &=11\cos^5\phi-10\cos^3\phi+5\cos\phi+5\cos^5\phi-10\cos^3\phi\\ &=16\cos^5\phi-20\cos^3\phi+5\cos\phi \end{align*}

Hence proved that:

cos5ϕ=16cos5ϕ20cos3ϕ+5cosϕ\cos 5\phi=16\cos^5\phi-20\cos^3\phi+5\cos\phi

(a) (ii) Find mod z\text{mod }z and argz\arg z where z=1+itan3π5z=1+i\tan\frac{3\pi}{5}.

(b) (i) Find the eigenvalues and the corresponding eigenvectors of the matrix

[221131122]\left[ \begin{matrix} 2&2&1\\ 1&3&1\\ 1&2&2 \end{matrix} \right]

Let the matrix be AA, as:

A=[221131122]ψA(x)=AλIn=02λ2113λ1122λ=0(2λ)[(3λ)(2λ)2]2(2λ1)+(23+λ)=0(2λ)(65λ+λ22)2(1λ)(1λ)=0(2λ)(λ25λ+4)3(1λ)=02λ210λ+8λ3+5λ24λ3+3λ=0λ3+7λ211λ+5=0λ37λ2+11λ5=0(λ1)(λ26λ+5)=0(λ1)(λ1)(λ5)=0λ=1,1,5\begin{align*} A&=\left[ \begin{matrix} 2&2&1\\ 1&3&1\\ 1&2&2 \end{matrix} \right]\\ \Rightarrow\psi_A(x)&=|A-\lambda I_n|=0\\ &\Rightarrow\left| \begin{matrix} 2-\lambda&2&1\\ 1&3-\lambda&1\\ 1&2&2-\lambda \end{matrix} \right|=0\\ &\Rightarrow(2-\lambda)[(3-\lambda)(2-\lambda)-2]-2(2-\lambda-1)+(2-3+\lambda)=0\\ &\Rightarrow(2-\lambda)(6-5\lambda+\lambda^2-2)-2(1-\lambda)-(1-\lambda)=0\\ &\Rightarrow(2-\lambda)(\lambda^2-5\lambda+4)-3(1-\lambda)=0\\ &\Rightarrow2\lambda^2-10\lambda+8-\lambda^3+5\lambda^2-4\lambda-3+3\lambda=0\\ &\Rightarrow-\lambda^3+7\lambda^2-11\lambda+5=0\\ &\Rightarrow\lambda^3-7\lambda^2+11\lambda-5=0\\ &\Rightarrow(\lambda-1)(\lambda^2-6\lambda+5)=0\\ &\Rightarrow(\lambda-1)(\lambda-1)(\lambda-5)=0\\ &\therefore \lambda=1,1,5 \end{align*}

Therefore: λ=1,1,5\lambda=1,1,5 are the necessary eigenvalues. Now finding the eigenvectors:

For λ=5\lambda=5:

ψA(5)=A5In=321121123\psi_A(5)=|A-5I_n|=\left| \begin{matrix} -3&2&1\\ 1&-2&1\\ 1&2&-3 \end{matrix} \right|

Solving for x1,x2,x3x_1,x_2,x_3:

x12123=x21113=x31212=x14=x24=x34=x1=x2=x3\begin{align*} &\frac{x_1}{\left| \begin{matrix} -2&1\\ 2&-3 \end{matrix} \right|}=\frac{-x_2}{\left| \begin{matrix} 1&1\\ 1&-3 \end{matrix} \right|}=\frac{x_3}{\left| \begin{matrix} 1&-2\\ 1&2 \end{matrix} \right|}\\ &=\frac{x_1}{4}=\frac{x_2}{4}=\frac{x_3}{4}\\ &=x_1=x_2=x_3 \end{align*}

Let x1=x2=x3=kx_1=x_2=x_3=k:

(x1x2x3)λ=5=k(111)\therefore \left( \begin{matrix} x_1\\ x_2\\ x_3 \end{matrix} \right)_{\lambda=5}=k\left( \begin{matrix} 1\\ 1\\ 1 \end{matrix} \right)

For λ=1\lambda=1:

Ax=0 [121121121](x1x2x3)=(000) [121000000](x1x2x3)=(000)[A:R2R2R1,R3R3R1]\begin{align*} &Ax=0\\ \Rightarrow\ &\left[ \begin{matrix} 1&2&1\\ 1&2&1\\ 1&2&1 \end{matrix} \right]\left( \begin{matrix} x_1\\ x_2\\ x_3 \end{matrix} \right)=\left( \begin{matrix} 0\\ 0\\ 0 \end{matrix} \right)\\ \Rightarrow\ &\left[ \begin{matrix} 1&2&1\\ 0&0&0\\ 0&0&0 \end{matrix} \right]\left( \begin{matrix} x_1\\ x_2\\ x_3 \end{matrix} \right)=\left( \begin{matrix} 0\\ 0\\ 0 \end{matrix} \right)&&[A:R_2\rightarrow R_2-R_1,R_3\rightarrow R_3-R_1] \end{align*}

Therefore, we get: x1+2x2+x3=0x_1+2x_2+x_3=0.

Considering through:

  • x2=0,x3=kx_2=0, x_3=k, we get: x1=kx_1=-k. Therefore eigenvector:

    (x1x2x3)λ=1=k(101) \therefore \left( \begin{matrix} x_1\\ x_2\\ x_3 \end{matrix} \right)_{\lambda=1}=k\left( \begin{matrix} -1\\ 0\\ 1 \end{matrix} \right)
  • x2=k,x3=0x_2=k,x_3=0, we get: x1=2kx_1=-2k. Therefore eigenvector:

    (x1x2x3)λ=1=k(210) \therefore \left( \begin{matrix} x_1\\ x_2\\ x_3 \end{matrix} \right)_{\lambda=1}=k\left( \begin{matrix} -2\\ 1\\ 0 \end{matrix} \right)
(x1x2x3)λ=1=k(101),k(210)\therefore \left( \begin{matrix} x_1\\ x_2\\ x_3 \end{matrix} \right)_{\lambda=1}=k\left( \begin{matrix} -1\\ 0\\ 1 \end{matrix} \right),k\left( \begin{matrix} -2\\ 1\\ 0 \end{matrix} \right)

(b) (ii) Determine all values of (1+3i)34(1+\sqrt{3}i)^{\frac34} and show that their product is 8.

Given complex number is: (1+3i)34(1+\sqrt{3}i)^{\frac34}. Converting it into trigonometric form:

(1+3i)34=2(cosπ3+isinπ3)34=8(cosπ+isinπ)14=84[cos(2kπ+π4)+isin(2kπ+π4)]\begin{align*} \Rightarrow(1+\sqrt{3}i)^{\frac34}&=2\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)^{\frac34}\\ &=8(\cos\pi+i\sin\pi)^{\frac14}\\ &=\sqrt[4]{8}\left[\cos\left(\frac{2k\pi+\pi}{4}\right)+i\sin\left(\frac{2k\pi+\pi}{4}\right)\right]\\ \end{align*}

The unique roots ziz_i are found for k=0,1,2,3k=0,1,2,3.

For k=0k=0:

z1=84[cosπ4+isinπ4]=84(12,12)\begin{align*} z_1=\sqrt[4]{8}\left[\cos\frac\pi4+i\sin\frac\pi4\right]=\sqrt[4]{8}\left(\frac{1}{\sqrt2},\frac{1}{\sqrt2}\right) \end{align*}

For k=1k=1:

z2=84[cos3π4+isin3π4]=84(12,12)\begin{align*} z_2=\sqrt[4]{8}\left[\cos\frac{3\pi}4+i\sin\frac{3\pi}4\right]=\sqrt[4]{8}\left(-\frac{1}{\sqrt2},\frac{1}{\sqrt2}\right) \end{align*}

For k=2k=2:

z3=84[cos5π4+isin5π4]=84(12,12)\begin{align*} z_3=\sqrt[4]{8}\left[\cos\frac{5\pi}4+i\sin\frac{5\pi}4\right]=\sqrt[4]{8}\left(-\frac{1}{\sqrt2},-\frac{1}{\sqrt2}\right) \end{align*}

For k=3k=3:

z1=84[cos7π4+isin7π4]=84(12,12)\begin{align*} z_1=\sqrt[4]{8}\left[\cos\frac{7\pi}4+i\sin\frac{7\pi}4\right]=\sqrt[4]{8}\left(\frac{1}{\sqrt2},-\frac{1}{\sqrt2}\right) \end{align*}

Multiplying the roots, we get:

z1z2z3z4=(84)4[(12,12)(12,12)(12,12)(12,12)]=8[(1,0)(12,12)(12,12)]=8[(1,0)(1,0)]=8\begin{align*} z_1z_2z_3z_4&=(\sqrt[4]8)^4\left[\left(\frac{1}{\sqrt2},\frac{1}{\sqrt2}\right)\left(-\frac{1}{\sqrt2},\frac{1}{\sqrt2}\right)\left(-\frac{1}{\sqrt2},-\frac{1}{\sqrt2}\right)\left(\frac{1}{\sqrt2},-\frac{1}{\sqrt2}\right)\right]\\ &=8\left[(-1,0)\left(-\frac{1}{\sqrt2},-\frac{1}{\sqrt2}\right)\left(\frac{1}{\sqrt2},-\frac{1}{\sqrt2}\right)\right]\\ &=8[(-1,0)(-1,0)]\\ &=8 \end{align*}

Hence proved, z1z2z3z4=8z_1z_2z_3z_4=8.

(c) (i) Solve the system of linear equations given by:

2x+4y+6z+4w=42x+5y+7z+6w=32x+3y+5z+2w=52x+4y+6z+4w=4\\ 2x+5y+7z+6w=3\\ 2x+3y+5z+2w=5

Forming the augmented matrix:

[AB]=[2464:42576:32352:5]=[1232:22576:32352:5][R112R1]=[1232:20112:10112:1][R2R22R1,R3R32R1]=[1012:40112:10000:0][R3R3+R2,R1R12R2]\begin{align*} [A|B]&=\left[ \begin{matrix} 2&4&6&4&:&4\\ 2&5&7&6&:&3\\ 2&3&5&2&:&5 \end{matrix} \right]\\ &=\left[ \begin{matrix} 1&2&3&2&:&2\\ 2&5&7&6&:&3\\ 2&3&5&2&:&5 \end{matrix} \right]&&[R_1\rightarrow\frac12 R_1]\\ &=\left[ \begin{matrix} 1&2&3&2&:&2\\ 0&1&1&2&:&-1\\ 0&-1&-1&-2&:&-1 \end{matrix} \right]&&[R_2\rightarrow R_2-2R_1,R_3\rightarrow R_3-2R_1]\\ &=\left[ \begin{matrix} 1&0&1&-2&:&4\\ 0&1&1&2&:&-1\\ 0&0&0&0&:&0 \end{matrix} \right]&&[R_3\rightarrow R_3+R_2,R_1\rightarrow R_1-2R_2]\\ \end{align*}

The above is the row-reduced echelon form of the augmented matrix.

Since, p[A]=p[AB]<np[A]=p[A|B]<n, where n=3n=3, therefore there exists an infinite number of solutions for the above set of equations.

Deriving equations from it:

x+z2w=4(1)y+z+2w=1(2)\begin{align*} &x+z-2w=4&&&&&&&&&&(1)\\ &y+z+2w=-1&&&&&&&&&&(2) \end{align*}

Taking, z=t1,w=t2z=t_1,w=t_2, where: {t1,t2}R[,+]\{t_1,t_2\}\in\R\in[-\infty,+\infty].

Substituting the values of z,wz,w in (1)(1), we get:

x=4t1+2t2x=4-t_1+2t_2

Substituting the values of z,wz,w in (2)(2), we get:

y=4t12t2y=4-t_1-2t_2

Since all the values x,y,z,wx,y,z,w dependes on t1,t2t_1,t_2.

Thereofore: {x,y,z,w}R[,+]\{x,y,z,w\}\in\R\in[-\infty,+\infty], i.e., an infinite number of solutions.

(c) (ii) If AA and BB be invertible matrices of the same order then show that ABAB is invertible and (AB)1=B1A1(AB)^{-1}=B^{-1}A^{-1}. Hence show that (A20)1=(A1)20(A^{20})^{-1}=(A^{-1})^{20}.

Considering two n×nn\times n matrices AA and BB.

Since AA is invertible, it is non-singular, A1A^{-1} exists, and detA0\det A\ne0. Furthermore by the definition of an inverse, A1A=AA1=InA^{-1}A=AA^{-1}=I_n.

Similarly since BB is invertible, it is non-singular, B1B^{-1} exists, and detB0\det B\ne0. Furthermore, by the definition of an inverse, B1B=BB1=InB^{-1}B=BB^{-1}=I_n.

detAB=detAdetB0\det AB=\det A\cdot\det B\ne0

Therefore, ABAB is a non-singular matrix, and its inverse exists.

Now:

(AB)(B1A1)=A(BB1)A1=(AIn)A1=AA1=In\begin{align*} (AB)(B^{-1}A^{-1})&=A(BB^{-1})A^{-1}\\ &=(AI_n)A^{-1}\\ &=AA^{-1}\\ &=I_n \end{align*}

Similarly:

(B1A1)(AB)=B1(A1A)B=(B1In)B=B1B=In\begin{align*} (B^{-1}A^{-1})(AB)&=B^{-1}(A^{-1}A)B\\ &=(B^{-1}I_n)B\\ &=B^{-1}B\\ &=I_n \end{align*}

Therefore, we can say:

(B1A1)(AB)=In(B1A1)=(AB)1\begin{align*} (B^{-1}A^{-1})(AB)&=I_n\\ \Rightarrow (B^{-1}A^{-1})&=(AB)^{-1} \end{align*}

Hence proved: (AB)1=B1A1(AB)^{-1}=B^{-1}A^{-1}

Now:

A20(A1)20=(AA1)20=In20=In(A1)20=(A20)1\begin{align*} A^{20}(A^{-1})^{20}&=(AA^{-1})^20\\ &=I_n^{20}\\ &=I_n\\ \Rightarrow(A^{-1})^{20}&=(A^{20})^{-1} \end{align*}

Hence proved: (A1)20=(A20)1(A^{-1})^{20}=(A^{20})^{-1}

(d) (i) If α,β,γ\alpha,\beta,\gamma be the roots of the equation x3+qx+1=0x^3+qx+1=0, find the equation whose roots are

αβ+βα,βγ+γβ,γα+αγ\frac\alpha\beta+\frac\beta\alpha,\frac\beta\gamma+\frac\gamma\beta,\frac\gamma\alpha+\frac\alpha\gamma

Given equation:

f(x)=x3+qx+1=0f(x)=x^3+qx+1=0

Let yy be one of the new roots:

y=αβ+βα=α2+β2αβ.γγ=(α2γ2)γ1=((α)22αβγ2)γ1=(2qγ2)γ1=2qγ+γ32qγ+γ3y=0=yγ\begin{align*} y&=\frac\alpha\beta+\frac\beta\alpha\\ &=\frac{\alpha^2+\beta^2}{\alpha\beta}.\frac\gamma\gamma\\ &=\frac{\left(\sum\alpha^2-\gamma^2\right)\gamma}{-1}\\ &=\frac{\left((\sum\alpha)^2-2\sum\alpha\beta-\gamma^2\right)\gamma}{-1}\\ &=\frac{(-2q-\gamma^2)\gamma}{-1}\\ &=2q\gamma+\gamma^3\\ &\Rightarrow2q\gamma+\gamma^3-y=0=y_\gamma \end{align*}

Performing:

yγf(γ)=2qγ+γ3yγ3qγ1=0qγy1=0γ=y+1q\begin{align*} y_\gamma-f(\gamma)&=2q\gamma+\gamma^3-y-\gamma^3-q\gamma-1=0\\ &\Rightarrow q\gamma-y-1=0\\ &\Rightarrow \gamma=\frac{y+1}{q} \end{align*}

Now, γ\gamma is a root of the above equation:

f(γ)=γ3+qγ+1=0(y+1q)3+q(y+1q)+1=0(y+1)3+q3(y+1)+q3=0y3+3y2+(q3+3)y+(2q3+1)=0\begin{align*} \therefore f(\gamma)&=\gamma^3+q\gamma+1=0\\ &\Rightarrow\left(\frac{y+1}{q}\right)^3+q\left(\frac{y+1}{q}\right)+1=0\\ &\Rightarrow(y+1)^3+q^3(y+1)+q^3=0\\ &\Rightarrow y^3+3y^2+(q^3+3)y+(2q^3+1)=0 \end{align*}

Therefore the transformed equation for the new roots is:

f(x)=x3+3x2+(q3+3)x+(2q3+1)=0f(x)=x^3+3x^2+(q^3+3)x+(2q^3+1)=0

(d) (ii) If α,β,γ\alpha,\beta,\gamma be the roots of the equation x3+qx+1=0x^3+qx+1=0, then prove that

  • (I) α3=3\sum\alpha^3=-3
  • (II) α5=5q\sum\alpha^5=5q

Given equation:

f(x)=x3+qx+1=0f(x)=x^3+qx+1=0

From here we can find out that:

  • α=b/a=0\sum\alpha=-b/a=0
  • αβ=c/a=q\sum\alpha\beta=c/a=q
  • αβγ=d/a=1\alpha\beta\gamma=-d/a=-1
  • α2=(α)22αβ=2q\sum\alpha^2=(\sum\alpha)^2-2\sum\alpha\beta=-2q

(I) To prove: α3=3\sum\alpha^3=-3

We know: f(α)=f(β)=f(γ)=0f(\alpha)=f(\beta)=f(\gamma)=0, since α,β,γ\alpha,\beta,\gamma are the roots of f(x)f(x).

f(α)+f(β)+f(γ)=(α3+β3+γ3)+q(α+β+γ)+3=0α3+qα+3=0α3=3[α=0]\begin{align*} \therefore f(\alpha)+f(\beta)+f(\gamma)&=(\alpha^3+\beta^3+\gamma^3)+q(\alpha+\beta+\gamma)+3=0\\ &\Rightarrow\sum\alpha^3+q\sum\alpha+3=0\\ &\Rightarrow\sum\alpha^3=-3&&[\because \sum\alpha=0] \end{align*}

Hence proved: α3=3\sum\alpha^3=-3

(II) To prove: α5=5q\sum\alpha^5=5q

Performing the following:

α2f(α)=α5+qα3+α2=0β2f(β)=β5+qβ3+β2=0γ2f(γ)=γ5+qγ3+γ2=0\alpha^2f(\alpha)=\alpha^5+q\alpha^3+\alpha^2=0\\ \beta^2f(\beta)=\beta^5+q\beta^3+\beta^2=0\\ \gamma^2f(\gamma)=\gamma^5+q\gamma^3+\gamma^2=0  α2f(α)+β2f(β)+γ2f(γ)=0 (α5+β5+γ5)+q(α3+β3+γ3)+(α2+β2+γ2)=0 α5+qα3+α2=0 α53q2q=0[α3=3,α2=2q] α5=5q\begin{align*} \therefore\ &\alpha^2f(\alpha)+\beta^2f(\beta)+\gamma^2f(\gamma)=0\\ \Rightarrow\ &(\alpha^5+\beta^5+\gamma^5)+q(\alpha^3+\beta^3+\gamma^3)+(\alpha^2+\beta^2+\gamma^2)=0\\ \Rightarrow\ &\sum\alpha^5+q\sum\alpha^3+\sum\alpha^2=0\\ \Rightarrow\ &\sum\alpha^5-3q-2q=0&&[\because\sum\alpha^3=-3,\sum\alpha^2=-2q]\\ \Rightarrow\ &\sum\alpha^5=5q \end{align*}

Hence proved: α5=5q\sum\alpha^5=5q

End of document
End of document
End of document
End of document
End of document
End of document
End of document
End of document